This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385915 #8 Aug 21 2025 07:21:15 %S A385915 1,1,1,2,0,2,2,2,4,7,4,11,4,12,8,19,14,29,23,47,32,74,44,110,83,164, %T A385915 135,276,196,439,304,663,489,1051,768,1656,1192,2581,1856,4046,2888, %U A385915 6317,4547,9848,7130,15440,11106,24186,17377,37729,27231,59062,42614,92484,66682,144664,104328,226371,163174,354230 %N A385915 G.f. satisfies A(x) = -(A(x^3) + A(x^4)) / A(-x^2). %C A385915 a(n) ~ c*d^n, where d = 1.25088706673007476636567388431275493535326837186841972110953..., and c = 0.52020182784673907154955829274303103782236665499908622597516... if n is even, or c = 0.29984063427406787235208627225075145443391314443990234248956... if n is odd. %C A385915 Radius of convergence r of g.f. A(x) satisfies A(-r^2) = 0 and A(r^8) = -A(-r^6) where r = 0.79943267989338565357086513413379878916201504254400772696808... %H A385915 Paul D. Hanna, <a href="/A385915/b385915.txt">Table of n, a(n) for n = 1..4100</a> %F A385915 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A385915 (1) A(x) = -(A(x^3) + A(x^4)) / A(-x^2). %F A385915 (2) -A(-x^2) = (A(x^3) - A(-x^3)) / (A(x) - A(-x)). %e A385915 G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 2*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 7*x^10 + 4*x^11 + 11*x^12 + 4*x^13 + 12*x^14 + 8*x^15 + 19*x^16 + 14*x^17 + ... %e A385915 where A(x) = -(A(x^3) + A(x^4)) / A(-x^2). %e A385915 RELATED SERIES. %e A385915 A(x^3) + A(x^4) = x^3 + x^4 + x^6 + x^8 + x^9 + 3*x^12 + 2*x^16 + 2*x^18 + 2*x^21 + 4*x^24 + 4*x^27 + 2*x^28 + 7*x^30 + 2*x^32 + 4*x^33 + ... %e A385915 where A(x^3) + A(x^4) = -A(x)*A(-x^2). %e A385915 Let B(x) satisfy A(B(x)) = x then %e A385915 B(x) = x - x^2 + x^3 - 2*x^4 + 8*x^5 - 30*x^6 + 96*x^7 - 293*x^8 + 945*x^9 - 3274*x^10 + 11679*x^11 - 41637*x^12 + 148232*x^13 - 531931*x^14 + 1932116*x^15 + ... %e A385915 where -x*A(-B(x)^2) = A(B(x)^3) + A(B(x)^4). %e A385915 SPECIFIC VALUES. %e A385915 The radius of convergence r satisfies A(-r^2) = 0 and A(r^8) = -A(-r^6) (see values given below). %e A385915 Also, -A(r^2)*A(-r^4) = A(r^6) - A(-r^6) (verify using values given below). %e A385915 Pertinent values of the form A(+-r^n) are as follows. %e A385915 A(r^2) = 2.25568357277545334879615953002039818218094300680461... %e A385915 A(r^3) = 1.13146138072432881698300088743197078335065492774082... %e A385915 A(r^4) = 0.71641352894347364220461475600253964520851864903599... %e A385915 A(r^6) = 0.35711522301431469636315144464034804067241658443788... %e A385915 A(r^8) = 0.20089620831732266634625988585698697217669751459458... %e A385915 A(r^9) = 0.15416703344989606171813799820914068395259643759003... %e A385915 A(r^12) = 0.07313926779510423315813760034344399834214660198599... %e A385915 A(-r^3) = -0.21985397321719823661610779049573983213878785101569... %e A385915 A(-r^4) = -0.24738019022989345323378959578383752763617413768043... %e A385915 A(-r^6) = -0.20089620831732266634625988585698697217669751459458... %e A385915 A(-r^8) = -0.14204971726158381650811456142497985591356688167501... %e A385915 A(-r^9) = -0.11730709739793756826670096033821084565818297459544... %e A385915 A(-r^12) = -0.06376735751196287607391908207491894730221727143981... %e A385915 ... %e A385915 A(1/2) = 1.076088418495368709480408335347599544142613316488183... where A(1/2) = -(A(1/8) + A(1/16)) / A(-1/4). %e A385915 A(1/3) = 0.510506935002162613788658566406685686749792809989670... where A(1/3) = -(A(1/27) + A(1/81)) / A(-1/9). %e A385915 A(1/4) = 0.336602030533756099597633504337162753515731187520108... where A(1/4) = -(A(1/64) + A(1/256)) / A(-1/16). %e A385915 A(1/8) = 0.143075145485757320815392125895338831436230491529773... %e A385915 A(1/16) = 0.066681035393498075099284704625662933959506411882465... %e A385915 A(1/27) = 0.038463353126979968975084607088546188041484601759398... %e A385915 A(1/64) = 0.015873074561121087188918170893728977022238322582751... %e A385915 A(1/81) = 0.0125000229473609050663549233903594151185002805142699... %e A385915 A(1/256) = 0.003921568859375695990570527967100959643728275680027... %e A385915 A(-1/4) = -0.194924670941580390863804372991458359617278204823944... %e A385915 A(-1/9) = -0.099828959373735016072583725604101146855506666073829... %e A385915 A(-1/16) = -0.058807260874534978256299853660358029251607884417895... %e A385915 ... %o A385915 (PARI) {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1, #binary(n+1), A = -(subst(A, x, x^3) + subst(A, x, x^4))/subst(A, x, -x^2) +x*O(x^n); ); polcoef(H=A, n)} %o A385915 for(n=1,100, print1(a(n), ", ")) %Y A385915 Cf. A385908. %K A385915 nonn,new %O A385915 1,4 %A A385915 _Paul D. Hanna_, Aug 21 2025