cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385923 E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^6*A'''''(x)).

This page as a plain text file.
%I A385923 #12 Aug 04 2025 18:46:22
%S A385923 1,1,3,16,125,1296,949927,4800957904,96864153387129,
%T A385923 5860087724767012480,886162470100464297115691,
%U A385923 294792579950929452096468136704,196126682670165049397384798842463797,242323538289386581241948100813652397771776,523949046624700150687300336366625589891821933775
%N A385923 E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^6*A'''''(x)).
%F A385923 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + 24*k - 50*k^2 + 35*k^3 - 10*k^4 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).
%t A385923 terms = 15; A[_] = 1; Do[A[x_] = Exp[x*A[x]+x^6*A'''''[x]] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* _Stefano Spezia_, Aug 04 2025 *)
%o A385923 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+sum(k=1, 5, stirling(5, k, 1)*j^k))*binomial(i-1, j)*v[j+1]*v[i-j])); v;
%Y A385923 Cf. A000272, A156326, A385920, A385921, A385922.
%Y A385923 Cf. A385765.
%K A385923 nonn
%O A385923 0,3
%A A385923 _Seiichi Manyama_, Jul 12 2025