cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385940 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385940 #7 Jul 13 2025 11:05:28
%S A385940 1,1,5,148,17189,5676336,4326290857,6602349049360,18222895109730537,
%T A385940 84299882148193513600,616234715187848381357261,
%U A385940 6792153358905298302629935104,108647409624774384033524243233165,2443481854821246436998727854436139008,75225062360951292682727255438183855480625
%N A385940 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).
%F A385940 E.g.f. A(x) satisfies A(x) = exp( x*A(x) + x*Sum_{k=1..3} Stirling2(3,k) * x^k * (d^k/dx^k A(x)) ).
%o A385940 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^3)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
%Y A385940 Cf. A156326, A385939, A385941, A385942, A385943.
%Y A385940 Cf. A385831.
%K A385940 nonn
%O A385940 0,3
%A A385940 _Seiichi Manyama_, Jul 13 2025