This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385941 #8 Jul 13 2025 11:05:32 %S A385941 1,1,5,268,88997,114813696,431933720137,3924557764490560, %T A385941 75445736579647162857,2782590090487142758353280, %U A385941 182621397948270167786531824781,20092371907364577184989521575079424,3530551258386563793887714321816262653965,951815440668013126114976449397609983348430848 %N A385941 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k). %F A385941 E.g.f. A(x) satisfies A(x) = exp( x*A(x) + x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ). %o A385941 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^4)*binomial(i-1, j)*v[j+1]*v[i-j])); v; %Y A385941 Cf. A156326, A385939, A385940, A385942, A385943. %Y A385941 Cf. A385832. %K A385941 nonn %O A385941 0,3 %A A385941 _Seiichi Manyama_, Jul 13 2025