cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385942 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385942 #8 Jul 13 2025 11:05:36
%S A385942 1,1,5,508,497861,2554041696,47918955042217,2608995595530944320,
%T A385942 350836859825187730934697,103472315352121087796983183360,
%U A385942 61101436986101317921145771113951181,67212924933426575369862458525709786073344,129898118403746997254471428114728554653243564525
%N A385942 a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).
%F A385942 E.g.f. A(x) satisfies A(x) = exp( x*A(x) + x*Sum_{k=1..5} Stirling2(5,k) * x^k * (d^k/dx^k A(x)) ).
%o A385942 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (1+j)*(1+j^5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
%Y A385942 Cf. A156326, A385939, A385940, A385941, A385943.
%Y A385942 Cf. A385833.
%K A385942 nonn
%O A385942 0,3
%A A385942 _Seiichi Manyama_, Jul 13 2025