cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385952 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385952 #10 Jul 13 2025 11:01:21
%S A385952 1,1,5,59,1309,48790,2840931,244770680,29887602613,4993307581843,
%T A385952 1108754325139526,319359741512132370,116893982001130825135,
%U A385952 53422902443413341967604,30024521959524315980717288,20477109546794819263709728560,16750490995674468051531269811269
%N A385952 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * a(k) * a(n-1-k).
%F A385952 G.f. A(x) satisfies A(x) = 1/( 1 - Sum_{k=0..3} binomial(3,k) * x^(k+1)/k! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.
%o A385952 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+3, 3)*v[j+1]*v[i-j])); v;
%Y A385952 Cf. A088716, A351798, A385953, A385954, A385955.
%Y A385952 Cf. A385945.
%K A385952 nonn
%O A385952 0,3
%A A385952 _Seiichi Manyama_, Jul 13 2025