cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385954 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385954 #8 Jul 13 2025 11:01:37
%S A385954 1,1,7,160,9309,1193192,303192604,140697031749,111717191583621,
%T A385954 144005113804578040,288587523313304535136,867207126292422956078756,
%U A385954 3789698359352103250842742098,23458242467926487526255374709015,201037179886862036121457727887328687
%N A385954 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * a(k) * a(n-1-k).
%F A385954 G.f. A(x) satisfies A(x) = 1/( 1 - Sum_{k=0..5} binomial(5,k) * x^(k+1)/k! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.
%o A385954 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+5, 5)*v[j+1]*v[i-j])); v;
%Y A385954 Cf. A088716, A351798, A385952, A385953, A385955.
%Y A385954 Cf. A385947.
%K A385954 nonn
%O A385954 0,3
%A A385954 _Seiichi Manyama_, Jul 13 2025