cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385955 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * a(k) * a(n-1-k).

This page as a plain text file.
%I A385955 #10 Jul 13 2025 11:01:43
%S A385955 1,1,8,239,20595,4369086,2027570077,1877595433603,3225737601183428,
%T A385955 9693366952072675847,48534731177400280613882,
%U A385955 388763324236561973987746008,4812113062706722698140922709260,89341696197620005494613697916344217,2424197647354438894347947373843634554628
%N A385955 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * a(k) * a(n-1-k).
%F A385955 G.f. A(x) satisfies A(x) = 1/( 1 - Sum_{k=0..6} binomial(6,k) * x^(k+1)/k! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.
%o A385955 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, binomial(j+6, 6)*v[j+1]*v[i-j])); v;
%Y A385955 Cf. A088716, A351798, A385952, A385953, A385954.
%Y A385955 Cf. A385948.
%K A385955 nonn
%O A385955 0,3
%A A385955 _Seiichi Manyama_, Jul 13 2025