cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385957 Prime(n) is the a(n)-th prime having its distinct digits.

This page as a plain text file.
%I A385957 #20 Jul 13 2025 11:36:07
%S A385957 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,1,3,1,4,1,1,
%T A385957 1,1,1,1,1,2,1,1,2,2,2,3,1,2,1,2,3,1,1,1,1,1,1,2,2,1,1,2,1,5,6,3,7,3,
%U A385957 1,1,2,1,1,4,1,2,1,2,1,1,2,2,1,2,2,3,1,1
%N A385957 Prime(n) is the a(n)-th prime having its distinct digits.
%H A385957 David A. Corneth, <a href="/A385957/b385957.txt">Table of n, a(n) for n = 1..10000</a>
%H A385957 David A. Corneth, <a href="/A385957/a385957.gp.txt">PARI program</a>
%H A385957 Michael De Vlieger, <a href="/A385957/a385957.png">Scatterplot of a(n)</a>, n = 1..10^6.
%e A385957 a(1) = 1 as prime(1) = 2 is the first prime having its distinct digits {2}.
%e A385957 a(11) = 2 as prime(11) = 31 is the second prime having its disitinct digits {1, 3} (the first is 13).
%e A385957 a(32) = 4 as prime(32) = 131 is the fourth prime having its distinct digits {1, 3} (the first three are 13, 31 and 113).
%t A385957 Block[{c, f, p}, c[_] := 0; f[x_] := Union@ IntegerDigits[x]; Reap[Do[p = Prime[n]; Sow[++c[f[p] ] ], {n, 120}] ][[-1, 1]] ] (* _Michael De Vlieger_, Jul 13 2025 *)
%o A385957 (PARI) \\ See Corneth link
%Y A385957 Cf. A086066, A254524, A385776.
%K A385957 nonn,easy,base,look
%O A385957 1,11
%A A385957 _David A. Corneth_, Jul 13 2025