cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385968 Triprimes that are concatenations of three consecutive primes, and whose prime factors sum to a prime.

This page as a plain text file.
%I A385968 #10 Jul 21 2025 21:43:30
%S A385968 199211223,331337347,367373379,487491499,653659661,859863877,
%T A385968 102110311033,106910871091,111711231129,112911511153,130313071319,
%U A385968 143914471451,165716631667,178918011811,214321532161,226722692273,246724732477,274127492753,274927532767,284328512857,330133073313,362336313637
%N A385968 Triprimes that are concatenations of three consecutive primes, and whose prime factors sum to a prime.
%H A385968 Robert Israel, <a href="/A385968/b385968.txt">Table of n, a(n) for n = 1..10000</a>
%e A385968 a(3) = 367373379 is a term because it is the concatenation of consecutive primes 367, 373 and 379 and is the product of three primes 3 * 19 * 6445147 such that 3 + 19 + 6445147 = 6445169 is prime.
%p A385968 tcat:= proc(a,b,c);
%p A385968   c + 10^(1+ilog10(c))*(b + 10^(1+ilog10(b))*a)
%p A385968 end proc:
%p A385968 R:= NULL: count:= 0:
%p A385968 q:= 2: r:= 3:
%p A385968 while count < 100 do
%p A385968   p:= q; q:= r; r:= nextprime(r);
%p A385968   x:= tcat(p,q,r);
%p A385968   F:= ifactors(x)[2];
%p A385968   if add(t[2],t=F) = 3 and isprime(add(t[1]*t[2],t=F)) then
%p A385968      count:= count+1; R:= R,x;
%p A385968   fi;
%p A385968 od:
%p A385968 R;
%t A385968 tp[p_]:=FromDigits[Join[IntegerDigits/@{Prime[p],Prime[p+1],Prime[p+2]}//Flatten]];Select[Array[tp,530],PrimeOmega[#]==3&&PrimeQ[Total[First/@FactorInteger[#]]]&] (* _James C. McMahon_, Jul 20 2025 *)
%Y A385968 Intersection of A107707 and A383114.
%K A385968 nonn,base
%O A385968 1,1
%A A385968 _Will Gosnell_ and _Robert Israel_, Jul 13 2025