This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385968 #10 Jul 21 2025 21:43:30 %S A385968 199211223,331337347,367373379,487491499,653659661,859863877, %T A385968 102110311033,106910871091,111711231129,112911511153,130313071319, %U A385968 143914471451,165716631667,178918011811,214321532161,226722692273,246724732477,274127492753,274927532767,284328512857,330133073313,362336313637 %N A385968 Triprimes that are concatenations of three consecutive primes, and whose prime factors sum to a prime. %H A385968 Robert Israel, <a href="/A385968/b385968.txt">Table of n, a(n) for n = 1..10000</a> %e A385968 a(3) = 367373379 is a term because it is the concatenation of consecutive primes 367, 373 and 379 and is the product of three primes 3 * 19 * 6445147 such that 3 + 19 + 6445147 = 6445169 is prime. %p A385968 tcat:= proc(a,b,c); %p A385968 c + 10^(1+ilog10(c))*(b + 10^(1+ilog10(b))*a) %p A385968 end proc: %p A385968 R:= NULL: count:= 0: %p A385968 q:= 2: r:= 3: %p A385968 while count < 100 do %p A385968 p:= q; q:= r; r:= nextprime(r); %p A385968 x:= tcat(p,q,r); %p A385968 F:= ifactors(x)[2]; %p A385968 if add(t[2],t=F) = 3 and isprime(add(t[1]*t[2],t=F)) then %p A385968 count:= count+1; R:= R,x; %p A385968 fi; %p A385968 od: %p A385968 R; %t A385968 tp[p_]:=FromDigits[Join[IntegerDigits/@{Prime[p],Prime[p+1],Prime[p+2]}//Flatten]];Select[Array[tp,530],PrimeOmega[#]==3&&PrimeQ[Total[First/@FactorInteger[#]]]&] (* _James C. McMahon_, Jul 20 2025 *) %Y A385968 Intersection of A107707 and A383114. %K A385968 nonn,base %O A385968 1,1 %A A385968 _Will Gosnell_ and _Robert Israel_, Jul 13 2025