cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385992 Numbers k such that (35^k - 3^k)/32 is prime.

This page as a plain text file.
%I A385992 #15 Aug 15 2025 00:32:12
%S A385992 5,31,67,73,991,2053,7507,34603
%N A385992 Numbers k such that (35^k - 3^k)/32 is prime.
%C A385992 The definition implies that k must be a prime.
%C A385992 a(9) > 10^5.
%H A385992 P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>.
%H A385992 J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
%H A385992 H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.
%H A385992 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>
%H A385992 Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>.
%H A385992 OEIS Wiki, <a href="https://oeis.org/wiki/Primes_of_the_form_(a%5En%2Bb%5En)/(a%2Bb)_and_(a%5En-b%5En)/(a-b)">Primes of the form (a^n+b^n)/(a+b) and (a^n-b^n)/(a-b)</a>
%t A385992 Select[Prime[Range[10000]], PrimeQ[(35^# - 3^#)/32] &]
%Y A385992 Cf. A062587, A062589, A127996, A127997, A128344, A204940, A217320, A225807, A229542, A375161, A375236, A377031.
%K A385992 nonn,hard,more
%O A385992 1,1
%A A385992 _Robert Price_, Aug 11 2025