This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385998 #9 Aug 12 2025 18:47:06 %S A385998 2,3,5,7,11,12,13,17,18,19,20,23,24,28,29,31,37,40,41,43,44,45,47,50, %T A385998 52,53,54,56,59,61,63,67,68,71,73,75,76,79,83,88,89,92,97,98,99,101, %U A385998 103,104,107,109,113,116,117,124,127,131,135,136,137,139,147,148,149 %N A385998 Numbers that are divisible by an equal number of distinct primes and squares. %C A385998 The smallest term such that number of distinct primes = number of squares = k is: %C A385998 k = 1: 2, %C A385998 k = 2: 12, %C A385998 k = 3: 240, %C A385998 k = 4: 1260. %H A385998 Felix Huber, <a href="/A385998/b385998.txt">Table of n, a(n) for n = 1..10000</a> %e A385998 12 is divisible by 2 distinct primes (2, 3) and by 2 squares (1, 4). %p A385998 c:=(n,d)->igcd(n,d)=d and igcd(n/d,d)=d: %p A385998 b:=n->nops(select(k->c(n,k),[seq(1..n)])): %p A385998 A385998:=proc(n) %p A385998 option remember; %p A385998 local k; %p A385998 if n=1 then %p A385998 2 %p A385998 else %p A385998 for k from procname(n-1)+1 do %p A385998 if b(k)=NumberTheory:-Omega(k,'distinct') then %p A385998 return k %p A385998 fi %p A385998 od %p A385998 fi; %p A385998 end proc; %p A385998 seq(A385998(n),n=1..63); %t A385998 q[k_] := Module[{e = FactorInteger[k][[;; , 2]]}, k > 1 && Length[e] == Times @@ (1 + Floor[e/2])]; Select[Range[150], q] (* _Amiram Eldar_, Aug 05 2025 *) %o A385998 (PARI) isok(m) = my(d=divisors(m)); #select(isprime, d) == #select(issquare, d); \\ _Michel Marcus_, Aug 05 2025 %Y A385998 Supersequence of A000040. %Y A385998 Cf. A000290, A001221, A046951. %K A385998 nonn %O A385998 1,1 %A A385998 _Felix Huber_, Aug 05 2025