This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385999 #11 Jul 19 2025 00:39:31 %S A385999 1,1,1,2,1,2,1,4,3,2,1,12,1,2,1,16,1,12,1,8,3,2,1 %N A385999 Least k such that every group of order n embeds into a group of order k*n. %F A385999 a(n) = A340514(n)/n. %F A385999 a(p) = 1 for prime p. %F A385999 a(p^2) = p. %F A385999 a(p^3) = p^3 for p an odd prime. %F A385999 If p < q are distinct primes, a(pq) = p if p divides (q-1), else a(pq) = 1. %e A385999 a(2) = 1 since there is one group of order 2 and therefore 2 is the least order such that all groups of order 2 are embedded, and 2/2 = 1. %e A385999 a(4) = 2 since there are two groups of order 4 and both groups are embedded in a group of order 8, and 8/4 = 2. %e A385999 a(12) = 12 since there are five groups of order 12 and 144 is the least order for which there is a group into which all five groups are embedded, and 144/12 = 12. %o A385999 (GAP) %o A385999 # Checks for n within the range [u..v]. In general u should be made equal to 1 to avoid erroneous output. Choice in range given for efficiency in checking individual terms. %o A385999 a := function(n, u, v) %o A385999 local T, S, k, r, m; %o A385999 T := []; %o A385999 for k in [1..NrSmallGroups(n)] do %o A385999 T := Concatenation(T, [SmallGroup(n,k)]); %o A385999 od; %o A385999 for m in [u..v] do %o A385999 S := []; %o A385999 for r in [1..NrSmallGroups(m*n)] do %o A385999 S := Concatenation(S, [SmallGroup(m*n, r)]); %o A385999 od; %o A385999 if ForAny(S, H -> ForAll(T, G -> ForAny(AllSubgroups(H), K -> IsomorphismGroups(G, K) <> fail))) then %o A385999 return m; %o A385999 break; %o A385999 fi; %o A385999 od; %o A385999 return fail; %o A385999 end; %Y A385999 Cf. A340514. %K A385999 nonn,more %O A385999 1,4 %A A385999 _Miles Englezou_, Jul 14 2025