cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386002 Decimal expansion of the volume of an augmented tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 3, 9, 5, 0, 3, 7, 6, 2, 3, 6, 3, 5, 1, 9, 6, 5, 8, 2, 1, 8, 6, 1, 4, 9, 7, 1, 3, 7, 3, 0, 7, 6, 3, 7, 4, 1, 8, 8, 4, 3, 1, 9, 6, 7, 7, 8, 3, 4, 7, 7, 4, 0, 0, 9, 0, 1, 0, 4, 0, 1, 6, 7, 4, 7, 4, 3, 9, 6, 2, 9, 7, 6, 5, 1, 6, 2, 0, 2, 0, 1, 5, 5, 6, 6, 7, 3, 6, 4, 9
Offset: 1

Views

Author

Paolo Xausa, Jul 18 2025

Keywords

Comments

The augmented tridiminished icosahedron is Johnson solid J_64.

Examples

			1.3950376236351965821861497137307637418843196778...
		

Crossrefs

Cf. A386003 (surface area).

Programs

  • Mathematica
    First[RealDigits[(15 + Sqrt[8] + 7*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J64", "Volume"], 10, 100]]

Formula

Equals (15 + 2*sqrt(2) + 7*sqrt(5))/24 = (15 + A010466 + 7*A002163)/24.
Equals the largest root of 2304*x^4 - 5760*x^3 + 3376*x^2 + 280*x - 49.

A385857 Decimal expansion of the volume of a metabidiminished icosahedron with unit edge.

Original entry on oeis.org

1, 5, 7, 8, 6, 8, 9, 3, 2, 5, 8, 3, 3, 2, 6, 3, 2, 3, 2, 1, 3, 6, 3, 9, 1, 2, 2, 2, 9, 1, 0, 4, 2, 5, 4, 1, 1, 8, 1, 3, 5, 3, 9, 4, 5, 3, 2, 0, 3, 8, 4, 1, 9, 0, 8, 0, 9, 0, 2, 9, 9, 0, 8, 1, 8, 0, 3, 5, 0, 6, 9, 7, 5, 2, 1, 2, 6, 0, 1, 6, 3, 3, 1, 3, 8, 1, 3, 8, 1, 3
Offset: 1

Views

Author

Paolo Xausa, Jul 14 2025

Keywords

Comments

The metabidiminished icosahedron is Johnson solid J_62.

Examples

			1.5786893258332632321363912229104254118135394532...
		

Crossrefs

Cf. A384625 (surface area + 10).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[20])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J62", "Volume"], 10, 100]]

Formula

Equals (5 + 2*sqrt(5))/6 = (5 + A010476)/6.
Equals A102208 - 2*A179552.
Equals the largest root of 36*x^2 - 60*x + 5.

A386001 Decimal expansion of the surface area of a tridiminished icosahedron with unit edge.

Original entry on oeis.org

7, 3, 2, 6, 4, 9, 5, 7, 1, 1, 2, 2, 7, 9, 9, 7, 3, 8, 5, 1, 8, 6, 3, 4, 3, 8, 5, 9, 0, 4, 8, 1, 6, 9, 2, 5, 6, 9, 0, 0, 6, 2, 9, 0, 7, 7, 2, 9, 3, 5, 7, 0, 7, 7, 2, 6, 9, 1, 0, 4, 2, 8, 4, 5, 3, 8, 6, 5, 2, 3, 2, 4, 7, 7, 6, 2, 8, 9, 8, 7, 4, 0, 3, 4, 8, 7, 5, 6, 4, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 17 2025

Keywords

Comments

The tridiminished icosahedron is Johnson solid J_63.

Examples

			7.32649571122799738518634385904816925690062907729...
		

Crossrefs

Cf. A386000 (volume).

Programs

  • Mathematica
    First[RealDigits[(5*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J63", "SurfaceArea"], 10, 100]]

Formula

Equals (5*sqrt(3) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (5*A002194 + 3*sqrt(5*(5 + A010476)))/4.
Equals 3*A102771 + 5*A120011 = A386003 - 2*A120011.
Equals the largest root of 256*x^8 - 19200*x^6 + 324000*x^4 - 1687500*x^2 + 1265625.
Showing 1-3 of 3 results.