cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386009 Decimal expansion of Product_{k>=2} k^( ((k/2)^(k-1)) / (exp(k/2)*k!) ).

Original entry on oeis.org

1, 5, 4, 9, 2, 5, 1, 0, 4, 3, 4, 2, 5, 6, 3, 4, 0, 4, 8, 4, 0, 0, 5, 4, 4, 0, 2, 8, 1, 5, 8, 9, 4, 3, 5, 5, 5, 3, 0, 8, 8, 3, 5, 2, 6, 7, 0, 1, 5, 8, 3, 6, 8, 5, 4, 7, 2, 3, 3, 4, 6, 6, 4, 9, 5, 4, 7, 2, 2, 4, 6, 5, 2, 1, 8, 3, 3, 4, 7, 1, 6, 1, 9, 4, 2
Offset: 1

Views

Author

Jwalin Bhatt, Jul 14 2025

Keywords

Comments

The geometric mean of the Borel distribution with parameter value 1/2 (A386016) approaches this constant. In general, for parameter value p it approaches Product_{k>=2} k^(((p*k)^(k-1))/((e^(p*k))*k!)).

Examples

			1.549251043425634048400544028158943555...
		

Crossrefs

Cf. A386016.

Programs

  • Mathematica
    Exp[NSum[((k/2)^(k-1) * Log[k])/(E^(k/2) * Factorial[k]), {k, 2, Infinity}, WorkingPrecision -> 120, NSumTerms -> 1000]]

Formula

Equals exp( Sum_{k>=2} log(k) * (((k/2)^(k-1)) / (exp(k/2)*k!)) ).