cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386011 Total number of inversions in all parking functions of length n.

This page as a plain text file.
%I A386011 #35 Aug 20 2025 10:43:55
%S A386011 0,1,18,300,5400,108045,2408448,59521392,1620000000,48230748225,
%T A386011 1560833556480,54591962772204,2053129541019648,82648417236328125,
%U A386011 3546584706554265600,161642713497024891840,7799116552647941947392,397183826482614347896737
%N A386011 Total number of inversions in all parking functions of length n.
%H A386011 Kyle Celano, <a href="/A386011/b386011.txt">Table of n, a(n) for n = 1..100</a>
%H A386011 Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, <a href="https://arxiv.org/abs/2508.11587">Inversions in parking functions</a>, arXiv:2508.11587 [math.CO], 2025.
%H A386011 Richard P. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/parking.pdf">Parking Functions</a>, 2011.
%H A386011 Wikipedia, <a href="https://en.wikipedia.org/wiki/Parking_function">Parking function</a>.
%F A386011 a(n) = binomial(n,2) * n*(n+1)^(n-2)/2.
%F A386011 a(n) = Sum_{k=0..binomial(n,2)} A152290(n,k)*k.
%F A386011 a(n) = binomial(n,2)*A055865(n)/2.
%e A386011 a(2)=1 because in the 3 parking functions of length 2 (11, 12, 21), there is 1 inversion: (1,2).
%t A386011 Table[Binomial[n,2] * n*(n+1)^(n-2)/2, {n, 0, 18}]
%Y A386011 Cf. A001809, A000272, A240796.
%K A386011 nonn,easy,changed
%O A386011 1,3
%A A386011 _Kyle Celano_, Jul 14 2025