cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386014 Distinct values occurring in first differences of A030655(n), listed in order of first appearance.

This page as a plain text file.
%I A386014 #74 Jul 24 2025 05:23:34
%S A386014 22,832,202,89302,2002,8993002,20002,899930002,200002,89999300002,
%T A386014 2000002,8999993000002,20000002,899999930000002,200000002,
%U A386014 89999999300000002,2000000002,8999999993000000002,20000000002,899999999930000000002,200000000002,89999999999300000000002,2000000000002
%N A386014 Distinct values occurring in first differences of A030655(n), listed in order of first appearance.
%C A386014 A030655(t) = 2*t-1||2*t = (2*t-1)*10^k + 2*t, where || indicates digit concatenation and 2*t has digit length k.
%C A386014 Difference A030655(t+1) - A030655(t) = 2*(10^k+1) when 2*t and 2*t+2 are both digit length k and this is the odd n case in the formulas below.
%C A386014 2*t and 2*t+2 differ in length only at t = j(k) = 5*10^(k-1)-1 with 2*t+2 then having length k+1, and this is the even n case in the formulas below.
%H A386014 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,110,-110,-1000,1000).
%F A386014 a(n) = 2*(10^k + 1) for odd n, where k = (n+1)/2.
%F A386014 a(n) = 9*100^k - 7*10^k + 2 for even n, where k = n/2.
%e A386014 At t = j(3) = 499, difference A030655(t+1) - A030655(t) = 9991000 - 997998 = 8993002 which is term a(6).
%p A386014 a := proc(n)
%p A386014     if type(n, even) then
%p A386014         k := n/2;
%p A386014         return 9*100^k - 7*10^k + 2;
%p A386014     else
%p A386014         k := (n + 1)/2;
%p A386014         return 2*(10^k + 1);
%p A386014     end if;
%p A386014 end proc:
%p A386014 seq(a(n), n=1..12);
%t A386014 a[n_] := Which[
%t A386014   EvenQ[n], Module[{k = n/2}, 9*100^k - 7*10^k + 2],
%t A386014   OddQ[n], Module[{k = (n + 1)/2}, 2*(10^k + 1)]
%t A386014 ];
%t A386014 Table[a[n], {n, 1, 12}]
%o A386014 (Python)
%o A386014 def a(n):
%o A386014     k = (n + 1)//2
%o A386014     if n % 2 == 0:
%o A386014         return 9 * 100**k - 7 * 10**k + 2
%o A386014     else:
%o A386014         return 2 * (10**k + 1)
%o A386014 (PARI) a(n) = if(n%2==1, 2*10^((n+1)/2)+2, 9*10^n - 7*10^(n/2) + 2) \\ _David A. Corneth_, Jul 17 2025
%Y A386014 Cf. A007376, A030655, A057147, A061084.
%K A386014 nonn,easy,base
%O A386014 1,1
%A A386014 _Carin Maria Sakin_, Jul 14 2025
%E A386014 More terms from _Michel Marcus_, Jul 16 2025
%E A386014 More terms from _David A. Corneth_, Jul 17 2025