This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386215 #11 Jul 27 2025 16:30:19 %S A386215 9,21,28,39,58,65,63,100,119,126,93,154,191,210,217,129,220,281,318, %T A386215 337,344,171,298,389,450,487,506,513,219,388,515,606,667,704,723,730, %U A386215 273,490,659,786,877,938,975,994,1001,333,604,821,990,1117,1208,1269 %N A386215 Values of v in the (1,3)-quartals (m,u,v,w) having m=2; i.e., values of v for solutions to m + u^3 = v + w^3, in positive integers, with m<v, sorted by u, then v. %C A386215 A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m<v and m^p + u^q = v^p + w^q. Here, m = 2, p = 1, q = 3. %F A386215 a(n) = 2 + u^3 - (u*(u-1)/2 + 1 - n)^3 where u = floor((3+sqrt(8*n-7))/2). - _Robert Israel_, Jul 27 2025 %e A386215 First thirty (1,3)-quartals (2,u,v,w): %e A386215 m u v w %e A386215 2 2 9 1 %e A386215 2 3 21 2 %e A386215 2 3 28 1 %e A386215 2 4 39 3 %e A386215 2 4 58 2 %e A386215 2 4 65 1 %e A386215 2 5 63 4 %e A386215 2 5 100 3 %e A386215 2 5 119 2 %e A386215 2 5 126 1 %e A386215 2 6 93 5 %e A386215 2 6 154 4 %e A386215 2 6 191 3 %e A386215 2 6 210 2 %e A386215 2 6 217 1 %e A386215 2 7 129 6 %e A386215 2 7 220 5 %e A386215 2 7 281 4 %e A386215 2 7 318 3 %e A386215 2 7 337 2 %e A386215 2 7 344 1 %e A386215 2 8 171 7 %e A386215 2 8 298 6 %e A386215 2 8 389 5 %e A386215 2 8 450 4 %e A386215 2 8 487 3 %e A386215 2 8 506 2 %e A386215 2 8 513 1 %e A386215 2 9 219 8 %e A386215 2 9 388 7 %e A386215 2^1 + 3^3 = 21^1 + 2^3, so (2,3,21,2) is in the list. %p A386215 seq(seq(2 + u^3 - w^3, w = u-1 .. 1,-1),u=2..20); # _Robert Israel_, Jul 27 2025 %t A386215 quartals[m_, p_, q_, max_] := %t A386215 Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, %t A386215 For[u = 1, u <= max, u++, lhs = m^p + u^q; %t A386215 AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; %t A386215 For[v = m + 1, v <= max, v++, %t A386215 For[w = 1, w <= max, w++, rhs = v^p + w^q; %t A386215 If[KeyExistsQ[lhsD, rhs], %t A386215 Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; %t A386215 ans = SortBy[ans, #[[2]] &]; %t A386215 Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", %t A386215 ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", %t A386215 ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, %t A386215 Length[ans]}]; ans]; %t A386215 solns = quartals[2, 1, 3, 2000] (* solutions restricted to v<2000 *) %t A386215 Grid[solns] %t A386215 u1 = Map[#[[2]] &, solns] (*u, A003057 *) %t A386215 v1 = Map[#[[3]] &, solns] (*v, A386215 *) %t A386215 w1 = Map[#[[4]] &, solns] (*w, A004736 *) %t A386215 (* _Peter J. C. Moses_, Jun 20 2025 *) %Y A386215 Cf. A003057, A004736, A385882. %K A386215 nonn %O A386215 1,1 %A A386215 _Clark Kimberling_, Jul 22 2025