This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386218 #8 Aug 16 2025 16:04:43 %S A386218 7,9,11,13,14,15,17,17,19,20,21,23,23,23,25,26,27,27,29,29,31,31,32, %T A386218 33,34,35,35,35,37,38,39,39,39,41,41,43,43,44,44,45,47,47,47,47,49,49, %U A386218 50,51,51,53,53,53,54,55,55,56,57,59,59,59,59,59,61,62,62 %N A386218 Values of u in the quartets (1, u, v, w) of type 2; i.e., values of u for solutions to (1 + u) = v(v - w), in positive integers, with v > 1, sorted by nondecreasing values of u; see Comments. %C A386218 A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 1. %e A386218 First 20 quartets (1,u,v,w) of type 2: %e A386218 m u v w %e A386218 1 7 4 2 %e A386218 1 9 5 3 %e A386218 1 11 6 4 %e A386218 1 13 7 5 %e A386218 1 14 5 2 %e A386218 1 15 8 6 %e A386218 1 17 6 3 %e A386218 1 17 9 7 %e A386218 1 19 10 8 %e A386218 1 20 7 4 %e A386218 1 21 11 9 %e A386218 1 23 6 2 %e A386218 1 23 8 5 %e A386218 1 23 12 10 %e A386218 1 25 13 11 %e A386218 1 26 9 6 %e A386218 1 27 7 3 %e A386218 1 27 14 12 %e A386218 1 29 10 7 %e A386218 1 29 15 13 %e A386218 Example : 1 (1 + 17) = 6 (6 - 3), so (1, 17, 6, 3) is in the list. %t A386218 Clear[solnsM]; %t A386218 solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching}, %t A386218 Do[Do[AppendTo[rhs, {v*(v - w), v, w}], {w, max}], {v, m*(m + max)}]; %t A386218 rhs = GatherBy[rhs, First]; %t A386218 Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &]; %t A386218 If[Length[matching] > 0, Do[AppendTo[ans, %t A386218 Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i, %t A386218 Length[matching]}]], {u, max}]; %t A386218 ans = Flatten[ans, 1]; %t A386218 Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &, %t A386218 Sort[Select[DeleteDuplicates[ans], %t A386218 Length[Union[#]] == 4 &]]]], #[[1]] == m &]]; %t A386218 TableForm[solns = solnsM[1, 100], %t A386218 TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A386218 u1 = Map[#[[2]] &, solns] (*u, A386218 *) %t A386218 v1 = Map[#[[3]] &, solns] (*v, A385883 *) %t A386218 w1 = Map[#[[4]] &, solns] (*w, A386630 *) %t A386218 (* _Peter J. C. Moses_, Jun 15 2025 *) %Y A386218 Cf. A385182 (type 1), A386630 (type 3). %K A386218 nonn %O A386218 1,1 %A A386218 _Clark Kimberling_, Jul 29 2025