This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386219 #6 Aug 11 2025 15:24:09 %S A386219 11,23,30,41,60,67,65,102,121,128,95,156,193,212,219,131,222,283,320, %T A386219 339,346,173,300,391,452,489,508,515,221,390,517,608,669,706,725,732, %U A386219 275,492,661,788,879,940,977,996,1003,335,606,823,992,1119,1210,1271,1308 %N A386219 Values of v in the (1,3)-quartals (m,u,v,w) having m=4; i.e., values of v for solutions to 4 + u^3 = v + w^3, in positive integers, with m<v; see Comments. %C A386219 A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m<v and m^p + u^q = v^p + w^q. Here, m=4, p=1, q=3. %e A386219 First 20 (1,3)-quartals (4,u,v,w): %e A386219 m u v w %e A386219 4 2 11 1 %e A386219 4 3 23 2 %e A386219 4 3 30 1 %e A386219 4 4 41 3 %e A386219 4 4 60 2 %e A386219 4 4 67 1 %e A386219 4 5 65 4 %e A386219 4 5 102 3 %e A386219 4 5 121 2 %e A386219 4 5 128 1 %e A386219 4 6 95 5 %e A386219 4 6 156 4 %e A386219 4 6 193 3 %e A386219 4 6 212 2 %e A386219 4 6 219 1 %e A386219 4 7 131 6 %e A386219 4 7 222 5 %e A386219 4 7 283 4 %e A386219 4 7 320 3 %e A386219 4 7 339 2 %e A386219 4^1 + 5^3 = 65^1 + 4^3, so (4,5,65,4) is in the list. %t A386219 quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, %t A386219 For[u = 1, u <= max, u++, lhs = m^p + u^q; %t A386219 AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; %t A386219 For[v = m + 1, v <= max, v++, %t A386219 For[w = 1, w <= max, w++, rhs = v^p + w^q; %t A386219 If[KeyExistsQ[lhsD, rhs], %t A386219 Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; %t A386219 ans = SortBy[ans, #[[2]] &]; %t A386219 Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", %t A386219 ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", %t A386219 ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, %t A386219 Length[ans]}]; ans]; %t A386219 solns = quartals[4, 1, 3, 2000] %t A386219 Grid[solns] %t A386219 (* _Peter J. C. Moses_, Jun 20 2025 *) %Y A386219 Cf. A385882, A386215, A386217. %K A386219 nonn %O A386219 1,1 %A A386219 _Clark Kimberling_, Jul 28 2025 %E A386219 Data corrected by _Sean A. Irvine_, Aug 11 2025