This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386222 #21 Aug 26 2025 06:31:46 %S A386222 1,5,34,201,1241,7538,46045,280693,1712338,10443297,63697825, %T A386222 388506066,2369604597,14452808029,88151396594,537657790873, %U A386222 3279312211305,20001361622066,121993408939853,744068928339589,4538266259447698,27680043927136849,168827650973959281 %N A386222 Number of 3-dimensional tilings of a 2 X 2 X (n+1) box with the two upper right cells removed, using 2 X 2 X 1 plates and 1 X 2 X 1 dominos. %C A386222 Here is the box for n=3: %C A386222 ____________ %C A386222 / / / /| %C A386222 /___/___/___/ |____ %C A386222 / / / /| / /| %C A386222 /___/___/___/ |/___/ | %C A386222 | | | | / /| / %C A386222 |___|___|___|/___/ |/ %C A386222 | | | | | / %C A386222 |___|___|___|___| /. %H A386222 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,9,-14). %F A386222 G.f.: 1/(1 - 5*x - 9*x^2 + 14*x^3). %F A386222 a(n) = 5*a(n-1) + 9*a(n-2) - 14*a(n-3) for n >= 3. %F A386222 a(n) = A359884(n) + 2*a(n-1). %e A386222 Here is one of the a(1)=5 ways to tile the shape for n=1, in this case with one flat plate on the bottom and one domino on top. %e A386222 ____ %e A386222 / /| %e A386222 / / |____ %e A386222 / / / /| %e A386222 /___/ / / | %e A386222 | | / / / %e A386222 |___|/___/ / %e A386222 | | / %e A386222 |_______| /. %t A386222 LinearRecurrence[{5, 9, -14}, {1, 5, 34}, 30] %Y A386222 Cf. A359884 %K A386222 nonn,changed %O A386222 0,2 %A A386222 _Greg Dresden_ and Xiaoya Gao, Aug 13 2025