This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386228 #7 Jul 20 2025 15:33:00 %S A386228 8539,11813,19181,27827,45013,52859,64621,64969,81077,103583,105373, %T A386228 127493,228203,264791,297397,318161,324491,439753,466247,480299, %U A386228 491353,496631,561091,613559,638431,678943,779981,822631,827537,906673,908893,1039477,1046029,1079927,1090577,1176871,1220327 %N A386228 Primes that are the sum of prime factors (with multiplicity) of a triprime which is the concatenation of three consecutive primes. %C A386228 Numbers that are the sum of prime factors (with multiplicity) of at least one member of A385968. %H A386228 Robert Israel, <a href="/A386228/b386228.txt">Table of n, a(n) for n = 1..5098</a> %e A386228 a(3) = 19181 is a term because 487491499 = A385968(4) is the concatenation of consecutive primes 487, 491, 499 and 487491499 = 11 * 2689 * 16481 with 11 + 2689 + 16481 = 19181 prime. %e A386228 The only term < 3 * 10^9 that arises in more than one way is %e A386228 a(756) = 149573911 = 53281 + 121110841 + 28409789 %e A386228 = 143597911 + 524453 + 5451547 %e A386228 where 53281 * 121110841 * 28409789 = 183325718332591833269 = A385968(3382) %e A386228 and 143597911 * 524453 * 5451547 = 410557941055894105601 = A385968(6601). %p A386228 tcat:= proc(a, b, c); %p A386228 c + 10^(1+ilog10(c))*(b + 10^(1+ilog10(b))*a) %p A386228 end proc: %p A386228 xmax:= 10^15: Bmax:= 3*10^6: %p A386228 B:= NULL: count:= 0: %p A386228 q:= 2: r:= 3: %p A386228 do %p A386228 p:= q; q:= r; r:= nextprime(r); %p A386228 x:= tcat(p, q, r); %p A386228 if x > xmax then break fi; %p A386228 F:= ifactors(x)[2]; %p A386228 if add(t[2], t=F) = 3 then %p A386228 b:= add(t[1]*t[2], t=F); %p A386228 if b <= Bmax and isprime(b) then %p A386228 count:= count+1; B:= B, b; %p A386228 fi fi; %p A386228 od: %p A386228 sort(convert({B},list)); %Y A386228 Cf. A385968. %K A386228 nonn,base %O A386228 1,1 %A A386228 _Will Gosnell_ and _Robert Israel_, Jul 15 2025