cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386232 Number of symmetric quandles of order n, up to isomorphism.

This page as a plain text file.
%I A386232 #5 Jul 21 2025 17:49:34
%S A386232 1,1,2,5,13,44,187,937,6459
%N A386232 Number of symmetric quandles of order n, up to isomorphism.
%C A386232 A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). We call the pair (Q,f) a symmetric quandle. A symmetric quandle isomorphism is a quandle isomorphism that intertwines good involutions.
%D A386232 Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.
%H A386232 Lực Ta, <a href="https://arxiv.org/abs/2505.08090">Good involutions of conjugation subquandles</a>, arXiv:2505.08090 [math.GT], 2025. See Table 1.
%H A386232 Lực Ta, <a href="https://github.com/luc-ta/Symmetric-Rack-Classification">Symmetric-Rack-Classification</a>, GitHub, 2025.
%o A386232 (GAP) See Ta, GitHub link
%Y A386232 Cf. A386231, A181769, A383828, A386233, A386234.
%Y A386232 Other sequences related to racks and quandles: A383144, A181771, A176077, A179010, A193024, A254434, A177886, A196111, A226173, A236146, A248908, A165200, A242044, A226193, A242275, A243931, A257351, A198147, A225744, A226172, A226174, A383828-A383831, A383145, A383146, A178432, A385041, A383145, A181770.
%K A386232 hard,more,nonn
%O A386232 0,3
%A A386232 _Luc Ta_, Jul 16 2025