cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386233 Number of good involutions of all nontrivial conjugation quandles of order A060652(n).

This page as a plain text file.
%I A386233 #7 Jul 21 2025 17:50:02
%S A386233 1,32,1,17,1,13056,66,33,1,1
%N A386233 Number of good involutions of all nontrivial conjugation quandles of order A060652(n).
%C A386233 A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). We call the pair (Q,f) a symmetric quandle.
%C A386233 A conjugation quandle is a group viewed as a quandle under the conjugation operation. Since conjugation quandles of abelian groups are trivial, this sequence only considers nonabelian groups.
%D A386233 Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.
%H A386233 Lực Ta, <a href="https://arxiv.org/abs/2505.08090">Good involutions of conjugation subquandles</a>, arXiv:2505.08090 [math.GT], 2025. See Table 2.
%H A386233 Lực Ta, <a href="https://github.com/luc-ta/Symmetric-Rack-Classification">Symmetric-Rack-Classification</a>, GitHub, 2025.
%e A386233 For n = 1, 3, 5, 9, 10, there is a unique nonabelian group G of order A060652(n), and G is centerless. It follows from Ta, Prop. 5.3 that a(n) = 1.
%o A386233 (GAP) See Ta, GitHub link
%Y A386233 Cf. A000001, A060652, A060689, A386233, A181769, A383828, A386231, A386232.
%Y A386233 Other sequences related to racks and quandles: A383144, A181771, A176077, A179010, A193024, A254434, A177886, A196111, A226173, A236146, A248908, A165200, A242044, A226193, A242275, A243931, A257351, A198147, A225744, A226172, A226174, A383828-A383831, A383145, A383146, A178432, A385041, A383145, A181770.
%K A386233 hard,more,nonn
%O A386233 1,2
%A A386233 _Luc Ta_, Jul 16 2025