This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386241 #25 Aug 19 2025 10:34:56 %S A386241 8,5,5,7,0,6,1,6,8,6,3,1,2,8,3,8,4,7,7,7,4,8,1,8,0,7,1,8,2,4,6,8,3,7, %T A386241 0,7,3,0,1,7,0,4,1,9,3,5,9,7,3,3,4,5,4,8,0,8,7,2,2,4,2,2,8,6,4,8,0,0, %U A386241 9,5,0,6,5,9,8,8,2,5,8,7,5,5,4,5,0,0,9 %N A386241 Decimal expansion of sqrt(5)*sin(Pi/8). %C A386241 Upper bound of the wobbling distance S of two rotated square lattices. See A307110 and A307731 for the special case of rotation angle Pi/4. According to Jan Fricke (1999), the angle Pi/4 is the most unfavorable case, i.e., smaller bounds can be found for all other angles. %H A386241 Paolo Xausa, <a href="/A386241/b386241.txt">Table of n, a(n) for n = 0..10000</a> %H A386241 Hans-Georg Carstens, Walter A. Deuber, Wolfgang Thumser, and Elke Koppenrade, <a href="https://doi.org/10.1017/S0963548398003484">Geometrical Bijections in Discrete Lattices</a>. Combinatorics, Probability and Computing, 8(1-2), 109-129, 1999. %H A386241 Jan Fricke, <a href="https://arxiv.org/abs/1607.07426">Symmetric Graphs have symmetric Matchings</a>, arXiv:1607.07426 [math.GR], 25 Jul 2016, Introduction. %H A386241 Klaus Nagel, <a href="/A386241/a386241.pdf">A Lower Bound for Double Lattice Bijections</a>, August 17, 2025. %H A386241 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a> %F A386241 Equals A002163*A182168. %F A386241 The minimal polynomial is 8*x^4 - 40*x^2 + 25. - _Joerg Arndt_, Aug 02 2025 %e A386241 0.8557061686312838477748180718246837073... %t A386241 First[RealDigits[Sqrt[5]*Sin[Pi/8],10,100]] (* _Paolo Xausa_, Aug 13 2025 *) %o A386241 (PARI) sqrt(5)*sin(Pi/8) \\ _Charles R Greathouse IV_, Aug 19 2025 %Y A386241 Cf. A002163, A144981, A182168, A307110, A307731, A367150. %K A386241 nonn,cons,changed %O A386241 0,1 %A A386241 _Hugo Pfoertner_, Jul 18 2025