This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386243 #30 Jul 25 2025 11:10:39 %S A386243 3,5,5,7,4,7,5,9,7,9,5,9,8,11,10,11,7,13,6,9,11,10,7,13,11,11,8,13,7, %T A386243 13,9,13,14,13,11,13,12,13,11,17,8,17,12,17,14,16,9,19,11,17,14,17,10, %U A386243 13,9,17,15,17,11,18,15,19,16,15,12,16,16,18,11,17,10,19,17,17,18,18,15 %N A386243 a(n) is the smallest possible g(k) in a set of increasing numbers g(1) < g(2) < ... < g(k) having Frobenius number n. %H A386243 David A. Corneth, <a href="/A386243/b386243.txt">Table of n, a(n) for n = 1..415</a> %H A386243 David A. Corneth, <a href="/A386243/a386243.gp.txt">All solutions for n = 1..415 where no number is a divisor of another number</a> %H A386243 Shunichi Matsubara, <a href="https://doi.org/10.48550/arXiv.1602.05657">The Computational Complexity of the Frobenius Problem</a>, arXiv:1602.05657, 2016. [Background information] %H A386243 Wikipedia, <a href="https://en.wikipedia.org/wiki/Coin_problem">Coin problem</a> %e A386243 a(15) = 10 because the set {6,7,10} has the Frobenius number of 15. No set of the form {..., 9} or {..., 8}, etc. has a Frobenius number of 15. %Y A386243 Cf. A028387, A079326, A124506, A138984, A138985. %K A386243 nonn,nice %O A386243 1,1 %A A386243 _Gordon Hamilton_, Jul 16 2025 %E A386243 More terms from _David A. Corneth_, Jul 16 2025