This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386252 #17 Jul 23 2025 17:50:59 %S A386252 30,60,150,180,240,270,600,810,1620,3000,4050,4800,9000,9720,15360, %T A386252 21600,23040,33750,138240,180000,281250,345600,737280,3456000,6144000, %U A386252 6561000,10125000,13668750,15552000,17496000,20995200,22118400,24000000,30000000,54675000 %N A386252 Numbers m of the form 2^i * 3^j * 5^k such that i, j, k > 0 and m+1 and m-1 are both prime numbers. %H A386252 Ken Clements, <a href="/A386252/b386252.txt">Table of n, a(n) for n = 1..926</a> %e A386252 a(1) = 2^1 * 3^1 * 5^1 = 30 where 29 and 31 are prime numbers. %e A386252 a(2) = 2^2 * 3^1 * 5^1 = 60 where 59 and 61 are prime numbers. %e A386252 a(3) = 2^1 * 3^1 * 5^2 = 150 where 149 and 151 are prime numbers. %e A386252 a(4) = 2^2 * 3^2 * 5^1 = 180 where 179 and 181 are prime numbers. %t A386252 seq[max_] := Select[Table[2^i*3^j*5^k, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}, {k, 1, Log[5, max/(2^i*3^j)]}] // Flatten // Sort, And @@ PrimeQ[# + {-1, 1}] &]; seq[10^8] (* _Amiram Eldar_, Jul 17 2025 *) %o A386252 (Python) %o A386252 from math import log10 %o A386252 from gmpy2 import is_prime %o A386252 l2, l3, l5 = log10(2), log10(3), log10(5) %o A386252 upto_digits = 20 %o A386252 sum_limit = 3 + int((upto_digits - l3 - l5)/l2) %o A386252 def TP_pi_3_upto_sum(limit): # Search all partitions up to the given exponent sum. %o A386252 unsorted_result = [] %o A386252 for exponent_sum in range(3, limit+1): %o A386252 for i in range(1, exponent_sum -1): %o A386252 for j in range(1, exponent_sum - i): %o A386252 k = exponent_sum - i - j %o A386252 log_N = i*l2 + j*l3 + k*l5 %o A386252 if log_N <= upto_digits: %o A386252 N = 2**i * 3**j * 5**k %o A386252 if is_prime(N-1) and is_prime(N+1): %o A386252 unsorted_result.append((N, log_N)) %o A386252 sorted_result = sorted(unsorted_result, key=lambda x: x[1]) %o A386252 return sorted_result %o A386252 print([n for n, _ in TP_pi_3_upto_sum(sum_limit) ]) %Y A386252 Subsequence of A143207. %Y A386252 Cf. A027856, A384530, A080185. %K A386252 nonn %O A386252 1,1 %A A386252 _Ken Clements_, Jul 16 2025