cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386260 Maximum exponent in the prime factorization of the exponent of the highest power of 2 dividing 2*n.

This page as a plain text file.
%I A386260 #9 Jul 18 2025 08:30:50
%S A386260 1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,
%T A386260 1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,2,
%U A386260 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1
%N A386260 Maximum exponent in the prime factorization of the exponent of the highest power of 2 dividing 2*n.
%C A386260 The first occurrence of k = 1, 2, ... is at n = 2^(2^k-2) = A051191(k).
%C A386260 The asymptotic density of the occurrences of 1 in this sequence is 4 * Sum_{k squarefree > 1} (1/2^k - 1/2^(k+1)) = 0.862752712766... .
%H A386260 Amiram Eldar, <a href="/A386260/b386260.txt">Table of n, a(n) for n = 1..10000</a>
%F A386260 a(n) = A051903(A001511(2*n)).
%F A386260 A051903(A001511(2*n-1)) = 0 for all n >= 1, and therefore the odd-indexed terms of A051903(A001511(n)) are omitted.
%F A386260 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} A051903(k)/2^(k-1) = 1.14512095789925078232... . If the odd-indexed zero terms had not been omitted, the asymptotic mean would be half this value, 0.57256047894962539116... .
%t A386260 a[n_] := Module[{v = IntegerExponent[n, 2] + 2}, If[v == 1, 0, Max[FactorInteger[v][[;;, 2]]]]]; Array[a, 100]
%o A386260 (PARI) a(n) = my(v = valuation(4*n, 2)); if(v == 1, 0, vecmax(factor(v)[,2]));
%Y A386260 Cf. A001511, A051191, A051903.
%K A386260 nonn,easy
%O A386260 1,4
%A A386260 _Amiram Eldar_, Jul 17 2025