This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386285 #9 Aug 24 2025 18:37:36 %S A386285 1,1,2,4,5,5,5,6,7,7,7,8,9,9,10,11,11,11,12,12,13,13,13,13,14,15,15, %T A386285 16,17,17,17,17,17,18,18,19,19,19,20,21,21,21,21,21,22,22,23,23,23,24, %U A386285 25,25,25,25,25,26,27,27,27,27,27,28,29,29,29,29,29,30 %N A386285 Values of u in the quartets (3, u, v, w) of type 2; i.e., values of u for solutions to 3(3 + u) = v(v - w), in positive integers, with v > 1, sorted by nondecreasing values of u; see Comments. %C A386285 A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 3. %e A386285 First 20 quartets (3,u,v,w) of type 2: %e A386285 m u v w %e A386285 3 1 6 4 %e A386285 3 1 12 11 %e A386285 3 2 15 14 %e A386285 3 4 21 20 %e A386285 3 5 6 2 %e A386285 3 5 12 10 %e A386285 3 5 24 23 %e A386285 3 6 27 26 %e A386285 3 7 6 1 %e A386285 3 7 15 13 %e A386285 3 7 30 29 %e A386285 3 8 33 32 %e A386285 3 9 18 16 %e A386285 3 9 36 35 %e A386285 3 10 39 38 %e A386285 3 11 7 1 %e A386285 3 11 21 19 %e A386285 3 11 42 41 %e A386285 3 12 9 4 %e A386285 3 12 45 44 %e A386285 3(3+2) = 15(15-14), so (3,2,15,14) is in the list. %t A386285 solnsB[t_, u_] := Module[{n = t*(t + u)}, %t A386285 Cases[Select[Divisors[n], # < n/# &], %t A386285 d_ :> With[{v = n/d, w = n/d - d}, {t, u, v, w} /; %t A386285 Length[DeleteDuplicates[{t, u, v, w}]] == 4]]]; %t A386285 TableForm[solns = Flatten[Table[Sort[solnsB[3, u]], {u, 50}], 1], %t A386285 TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A386285 Map[#[[2]] &, solns] (*u,A386285*) %t A386285 Map[#[[3]] &, solns] (*v,A386286*) %t A386285 Map[#[[4]] &, solns] (*w,A386287*) %t A386285 (* _Peter J. C. Moses_, Aug 17 2025 *) %Y A386285 Cf. A385182 (type 1, m=1), A386286, A386630 (type 3, m=1). %K A386285 nonn,changed %O A386285 1,3 %A A386285 _Clark Kimberling_, Aug 12 2025