This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386288 #12 Aug 19 2025 16:41:32 %S A386288 1,1,2,2,2,3,3,5,5,5,6,6,6,7,7,8,8,8,9,9,10,10,10,11,11,11,11,12,12, %T A386288 13,13,14,14,14,14,14,15,15,16,16,16,17,17,17,17,17,18,18,18,19,19,20, %U A386288 20,20,20,21,21,21,22,22,22,23,23,23,23,23,24,24,24,24 %N A386288 Values of u in the quartets (4, u, v, w) of type 2; i.e., values of u for solutions to 4(4 + u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments. %C A386288 A 4-tuple (m, u, v, w) is a quartet of type 2 if m, u, v, w are distinct positive integers such that m < v and m*(m + u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 4. %e A386288 First 20 quartets (4,u,v,w) of type 2: %e A386288 m u v w %e A386288 4 1 10 8 %e A386288 4 1 20 19 %e A386288 4 2 8 5 %e A386288 4 2 12 10 %e A386288 4 2 24 23 %e A386288 4 3 14 12 %e A386288 4 3 28 27 %e A386288 4 5 12 9 %e A386288 4 5 18 16 %e A386288 4 5 36 35 %e A386288 4 6 8 3 %e A386288 4 6 20 18 %e A386288 4 6 40 39 %e A386288 4 7 22 20 %e A386288 4 7 44 43 %e A386288 4 8 16 13 %e A386288 4 8 24 22 %e A386288 4 8 48 47 %e A386288 4 9 26 24 %e A386288 4 9 52 51 %e A386288 4(4+2) = 8(8-5), so (4,2,8,5) is in the list. %t A386288 solnsB[t_, u_] := Module[{n = t*(t + u)}, %t A386288 Cases[Select[Divisors[n], # < n/# &], %t A386288 d_ :> With[{v = n/d, w = n/d - d}, {t, u, v, w} /; %t A386288 Length[DeleteDuplicates[{t, u, v, w}]] == 4]]]; %t A386288 TableForm[solns = Flatten[Table[Sort[solnsB[4, u]], {u, 26}], 1], %t A386288 TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A386288 u1 = Map[#[[2]] &, solns] (*u, A386288 *) %t A386288 v1 = Map[#[[3]] &, solns] (*v, A386628 *) %t A386288 w1 = Map[#[[4]] &, solns] (*w, A386629 *) %t A386288 (* _Peter J. C. Moses_, Aug 17 2025 *) %Y A386288 Cf. A385182 (type 1, m=1), A386630 (type 3, m=1). %K A386288 nonn %O A386288 1,3 %A A386288 _Clark Kimberling_, Aug 12 2025