A386296 Array read by descending antidiagonals: T(n,k) is the number of ways to partition n X n X n cube into k noncongruent cuboids.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 4, 3, 2, 1, 0, 0, 2, 12, 8, 2, 1, 0, 0, 1, 31, 47, 11, 3, 1, 0, 0, 0, 70, 209, 85, 19, 3, 1, 0, 0, 0, 115, 846, 560, 183, 23, 4, 1, 0, 0, 0, 97, 3131, 3508, 1561, 266, 35, 4, 1, 0, 0, 0, 40, 9533, 21699, 12960
Offset: 1
Examples
Array begins: 1 0 0 0 0 1 0 0 0 0 1 1 2 4 2 1 1 3 12 31 1 2 8 47 209 1 2 11 85 560 1 3 19 183 1561 1 3 23 266 2852 1 4 35 466 5894 1 4 40 613 9093
Links
- Sean A. Irvine, Java program (github)
- Sean A. Irvine, The 31 possible partitions of a 4 X 4 X 4 cube into 5 distinct cuboids, 2025.
- Sean A. Irvine, The 47 possible partitions of a 5 X 5 X 5 cube into 4 distinct cuboids, 2025.
Crossrefs
Formula
T(n,1) = 1.
T(n,k) = 0 for k > n^3.
Comments