This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386307 #13 Aug 23 2025 23:40:16 %S A386307 15,25,30,35,39,50,51,55,60,65,65,70,75,75,78,85,85,87,91,95,100,102, %T A386307 105,110,111,115,119,120,123,125,130,130,135,140,143,145,145,150,150, %U A386307 155,156,159,165,169,170,170,174,175,175,182,183,185,185,187,190,195,195 %N A386307 Ordered hypotenuses of Pythagorean triples that do not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), where u and v are positive integers. %C A386307 In the form (u^2 - v^2, 2*u*v, u^2 + v^2), u^2 + v^2) is the hypotenuse, max(u^2 - v^2, 2*u*v) is the long leg and min(u^2 - v^2, 2*u*v) is the short leg. %C A386307 A101930(n) gives the total number of Pythagorean triples <= 10^n. The percentage of triangles in this sequence increases continuously: %C A386307 number of terms <= h total number of %C A386307 h in this sequence hypotenuses <= h percentage %C A386307 10 0 2 0.0 % %C A386307 100 21 52 40.4 % %C A386307 1000 514 881 58.3 % %C A386307 10000 8629 12471 69.2 % %C A386307 100000 122431 161436 75.8 % %H A386307 Felix Huber, <a href="/A386307/b386307.txt">Table of n, a(n) for n = 1..10000</a> %H A386307 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a> %F A386307 a(n) = sqrt(A386308(n)^2 + A386309(n)^2). %F A386307 {A009000(n)} = {a(n)} union {A020882(n)} union {A386943(n)}. %e A386307 The Pythagorean triple (9, 12, 15) does not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), because 15 is not a sum of two nonzero squares. Therefore 15 is a term. %p A386307 A386307:=proc(N) # To get all hypotenuses <= N %p A386307 local i,l,m,u,v,r,x,y,z; %p A386307 l:={}; %p A386307 m:={}; %p A386307 for u from 2 to floor(sqrt(N-1)) do %p A386307 for v to min(u-1,floor(sqrt(N-u^2))) do %p A386307 x:=min(2*u*v,u^2-v^2); %p A386307 y:=max(2*u*v,u^2-v^2); %p A386307 z:=u^2+v^2; %p A386307 m:=m union {[z,y,x]}; %p A386307 if gcd(u,v)=1 and is(u-v,odd) then %p A386307 l:=l union {seq([i*z,i*y,i*x],i=1..N/z)} %p A386307 fi %p A386307 od %p A386307 od; %p A386307 r:=l minus m; %p A386307 return seq(r[i,1],i=1..nops(r)); %p A386307 end proc; %p A386307 A386307(1000); %Y A386307 Subsequence of A009000. %Y A386307 Cf. A101930, A366428, A380072, A386308, A386309, A386943. %K A386307 nonn,new %O A386307 1,1 %A A386307 _Felix Huber_, Aug 13 2025