This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386308 #9 Aug 23 2025 23:39:56 %S A386308 12,20,24,28,36,40,45,44,48,52,60,56,60,72,72,68,75,63,84,76,80,90,84, %T A386308 88,105,92,105,96,120,120,104,120,108,112,132,105,116,120,144,124,144, %U A386308 135,132,156,136,150,126,140,168,168,180,148,175,165,152,156,168,180 %N A386308 Long legs of Pythagorean triples that do not have the form (u^2 - v^2, 2*u*v, u^2 + v^2) ordered by increasing hypotenuse (A386307), where u and v are positive integers. %C A386308 In the form (u^2 - v^2, 2*u*v, u^2 + v^2), u^2 + v^2 is the hypotenuse, max(u^2 - v^2, 2*u*v) is the long leg and min(u^2 - v^2, 2*u*v) is the short leg. %H A386308 Felix Huber, <a href="/A386308/b386308.txt">Table of n, a(n) for n = 1..10000</a> %H A386308 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a> %F A386308 a(n) = sqrt(A386307(n)^2 - A386309(n)^2). %F A386308 {A046084(n)} = {a(n)} union {A046087(n)} union {A386944(n)}. %e A386308 The Pythagorean triple (9, 12, 15) does not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), because 15 is not a sum of two nonzero squares. Therefore 12 is a term. %p A386308 A386308:=proc(N) # To get all terms with hypotenuses <= N %p A386308 local i,l,m,u,v,r,x,y,z; %p A386308 l:={}; %p A386308 m:={}; %p A386308 for u from 2 to floor(sqrt(N-1)) do %p A386308 for v to min(u-1,floor(sqrt(N-u^2))) do %p A386308 x:=min(2*u*v,u^2-v^2); %p A386308 y:=max(2*u*v,u^2-v^2); %p A386308 z:=u^2+v^2; %p A386308 m:=m union {[z,y,x]}; %p A386308 if gcd(u,v)=1 and is(u-v,odd) then %p A386308 l:=l union {seq([i*z,i*y,i*x],i=1..N/z)} %p A386308 fi %p A386308 od %p A386308 od; %p A386308 r:=l minus m; %p A386308 return seq(r[i,2],i=1..nops(r)); %p A386308 end proc; %p A386308 A386308(1000); %Y A386308 Subsequence of A046084. %Y A386308 Cf. A366675, A380073, A386307, A386309, A386944. %K A386308 nonn,new %O A386308 1,1 %A A386308 _Felix Huber_, Aug 19 2025