This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386316 #24 Aug 04 2025 00:09:39 %S A386316 4,9,12,15,16,20,20,24,24,25,28,30,30,35,35,35,36,40,40,42,42,45,48, %T A386316 48,48,49,54,54,54,56,56,60,60,63,63,63,64,70,70,70,70,72,72,77,77,77, %U A386316 80,80,80,81,84,88,88,88,88,90,90,96,96,96,96,99,99,99,100,104,104,108 %N A386316 a(n) = the minimum value of (x + 2)*(y + 2) such that x*y >= n. %C A386316 Smallest number of elements in a rectangular array with at least n interior elements. %C A386316 If baking square brownies in a rectangular pan, a(n) is the minimum number of brownies required to have at least n gooey center brownies. %C A386316 a(n) = the minimum of A386318(m) for m >= n. If n < k^2, then the value of m that achieves this minimum is also strictly less than k^2. %C A386316 Conjecture: As n grows, the length of the longest run grows without bound. The first run of length 50 begins at a(506269) = 509120. Up to 10^6 terms, the longest runs are of length 59. %F A386316 a(k^2) = (k+2)^2 = A386318(k^2). %F A386316 a(k^2 - 1) = (k+1)(k+3) = A386318(k^2 - 1). %e A386316 a(5) = a(6) = 20 because the 4 X 5 array is the smallest with at least 5 interior elements, and the smallest with at least 6 interior elements. %t A386316 Table[Minimize[{(x+2)(y+2), x y >= n && x>=0 && y>=0}, {x,y}, Integers][[1]], {n, 0, 67}] (* _Giovanni Resta_, Jul 21 2025 *) %o A386316 (Python) %o A386316 import math %o A386316 def a(n): %o A386316 if n == 0: return 4 %o A386316 min_val = 3*(n+2) %o A386316 for x in range(1, math.isqrt(n)+1): %o A386316 y = (n + x - 1) // x %o A386316 if (x + 2) * (y + 2) < min_val: %o A386316 min_val = (x + 2) * (y + 2) %o A386316 return min_val %o A386316 (PARI) a(n) = my(m=oo, mm); for (x=0, n, for (y=0, n, if ((x*y >= n) && (mm=(x + 2)*(y + 2)) <= m, m = mm););); m; \\ _Michel Marcus_, Jul 21 2025 %Y A386316 Cf. A386318. %K A386316 nonn,easy %O A386316 0,1 %A A386316 _Ben Orlin_, Jul 18 2025