This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386319 #77 Aug 01 2025 17:05:30 %S A386319 1,1,1,1,2,3,1,3,5,6,1,4,7,9,10,1,5,9,12,14,15,1,6,11,15,18,20,21,1,7, %T A386319 13,18,22,25,27,28,1,8,15,21,26,30,33,35,36,1,9,17,24,30,35,39,42,44, %U A386319 45,1,10,19,27,34,40,45,49,52,54,55,1,11,21,30,38,45,51,56,60,63,65,66,1,12,23,33,42,50,57,63,68,72,75,77,78 %N A386319 Triangle read by rows where row n is the start, corner and end vertex numbers of a triangular spiral with n sides on a triangular grid, starting from 1 and working inwards (0 <= k <= n). %C A386319 The first 2 sides are length n-1 so that T(n,1) = 1 + (n-1) and T(n,2) = 1 + 2*(n-1) and then the side lengths decrease by 1 each time as it spirals in (ending at triangular number A000217(n) when n>=1). %C A386319 These sides mesh to fill the triangle as they go inwards, and can also be thought of going outwards tracing out the sides of the triangle. %C A386319 The resulting vertex numbers are 1 together with row n of A141419. %C A386319 Row n=1 is taken as a side of length 0 so the start and end numbers are both 1 (which is not really a spiral but is consistent with the formula and two points 1,2 would be even less like a triangle filled by a spiral). %F A386319 T(n,0) = 1. %F A386319 T(n,k) = k*(2*n - k + 1)/2 for k >= 1. %e A386319 Triangle begins: %e A386319 -------------------------------------- %e A386319 n\k 0 1 2 3 4 5 6 7 %e A386319 -------------------------------------- %e A386319 0| 1; %e A386319 1| 1, 1; %e A386319 2| 1, 2, 3; %e A386319 3| 1, 3, 5, 6; %e A386319 4| 1, 4, 7, 9, 10; %e A386319 5| 1, 5, 9, 12, 14, 15; %e A386319 6| 1, 6, 11, 15, 18, 20, 21; %e A386319 7| 1, 7, 13, 18, 22, 25, 27, 28; %e A386319 ... %e A386319 For n = 2 the spiral is 2 sides of length 1 so row [1, 2, 3], %e A386319 1 --- 2 %e A386319 / %e A386319 3 %e A386319 For n = 4 the spiral is: %e A386319 1 2 3 4 %e A386319 9 10 5 %e A386319 8 6 %e A386319 7 %e A386319 The start, corner and end vertices are [1, 4, 7, 9, 10]. %t A386319 T[n_,k_]:=If[k==0,1,k(2n-k+1)/2];Table[T[n,k],{n,0,12},{k,0,n}]//Flatten (* _James C. McMahon_, Jul 31 2025 *) %Y A386319 Columns: A000012 (k=0), A000027 (k=1), A144396 (k=3). %Y A386319 Cf. A179865(n+1) (main diagonal), A056520 (row sums). %Y A386319 Cf. A000217, A141419. %K A386319 nonn,easy,tabl %O A386319 0,5 %A A386319 _Binay Krishna Maity_, Jul 18 2025