cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386363 Variation of triangle of Entringer numbers (A008281) read by rows: T(n, k) = T(n, k-1) + (n-2)*T(n-1, n-k) for 1 < k <= n, T(n, 1) = T(n-1, n-1) for n > 0, T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 2, 6, 8, 8, 0, 8, 32, 50, 56, 56, 0, 56, 280, 480, 608, 640, 640, 0, 640, 3840, 6880, 9280, 10680, 10960, 10960, 0, 10960, 76720, 140800, 196480, 237760, 260800, 264640, 264640, 0, 264640, 2117120, 3942720, 5607040, 6982400, 7968000, 8505040, 8581760, 8581760
Offset: 0

Views

Author

Mikhail Kurkov, Jul 19 2025

Keywords

Examples

			Triangle begins:
  1;
  0,     1;
  0,     1,     1;
  0,     1,     2,      2;
  0,     2,     6,      8,      8;
  0,     8,    32,     50,     56,     56;
  0,    56,   280,    480,    608,    640,    640;
  0,   640,  3840,   6880,   9280,  10680,  10960,  10960;
  0, 10960, 76720, 140800, 196480, 237760, 260800, 264640, 264640;
		

Crossrefs

Cf. A008281, A386381 (main diagonal).

Programs

  • Maple
    T := proc(n, k) option remember; ifelse(k = 0, 0^n, ifelse(k = 1, T(n-1, n-1), T(n, k-1) + (n - 2)*T(n-1, n-k))) end: seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jul 19 2025
  • Mathematica
    A386363[n_, k_] := A386363[n, k] = Switch[k, 0, Boole[n == 0], 1, A386363[n-1, n-1], _, A386363[n, k-1] + (n-2)*A386363[n-1, n-k]];
    Table[A386363[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 21 2025 *)
  • PARI
    rows_upto(n) = {my(v1, v2, v3);
    v1 = vector(n+1, i, 0); v1[1] = 1;
    v2 = vector(n+1, i, 0); v2[1] = [1];
    for(i=1, n, v3 = v1; v1[1] = 0; v1[2] = v3[i];
    for(j=2, i, v1[j+1] = v1[j] + (i-2)*v3[i-j+1]);
    v2[i+1] = vector(i+1, j, v1[j])); v2}
    
  • Python
    from functools import cache
    @cache
    def seidel(n: int)-> list[int]:
        if n == 0: return [1]
        rowA = seidel(n - 1)
        row = [0] + seidel(n - 1)
        row[1] = row[n]
        for k in range(2, n + 1):
            row[k] = row[k - 1] + (n - 2) * rowA[n - k]
        return row
    def A386363row(n: int) -> list[int]: return seidel(n)
    for n in range(10): print(A386363row(n))  # Peter Luschny, Jul 20 2025