This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386374 #16 Jul 27 2025 00:20:21 %S A386374 1,1,3,10,47,276,2022,17606,179391,2093860,27581888,404680398, %T A386374 6541528886,115437202986,2206844818622,45408726154590, %U A386374 1000134868827263,23468606700087972,584340284516996400,15383829737201853518,426915367401366308112,12454073547413511363878 %N A386374 Number of words of length n over an infinite alphabet such that the letters cover an initial interval and the letter 1 occurs at least as many times as any other letter. %H A386374 Alois P. Heinz, <a href="/A386374/b386374.txt">Table of n, a(n) for n = 0..425</a> %F A386374 E.g.f.: Sum_{i>=0} x^i/(i! * (1 - Sum_{j=1..i} x^j/j!)). %e A386374 a(3) = 10 counts: (1,1,1), (1,1,2), (1,2,1), (1,2,3), (1,3,2), (2,1,1), (2,1,3), (2,3,1), (3,1,2), (3,2,1). %p A386374 b:= proc(n, t) option remember; `if`(n=0, 1, %p A386374 add(b(n-j, t)/j!, j=1..min(n, t))) %p A386374 end: %p A386374 a:= n-> n!*add(b(n-j, j)/j!, j=0..n): %p A386374 seq(a(n), n=0..21); # _Alois P. Heinz_, Jul 19 2025 %o A386374 (PARI) A_x(N) = {my(x='x+O('x^N)); Vec(serlaplace(sum(i=0,N, x^i/(i! *(1-sum(j=1,i, x^j/j!))))))} %Y A386374 Cf. A000262, A000670, A006153, A308876. %K A386374 nonn,easy %O A386374 0,3 %A A386374 _John Tyler Rascoe_, Jul 19 2025