cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386379 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).

This page as a plain text file.
%I A386379 #17 Jul 20 2025 15:02:13
%S A386379 1,1,1,1,1,1,2,3,4,5,6,13,21,30,40,51,114,190,280,385,506,1150,1950,
%T A386379 2925,4095,5481,12586,21576,32736,46376,62832,145299,250971,383838,
%U A386379 548340,749398,1741844,3025308,4654320,6690585,9203634,21475146,37456650,57887550
%N A386379 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).
%H A386379 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss-Catalan_number">Fuss-Catalan number</a>
%F A386379 For k=0..4, a(5*n+k) = (k+1) * binomial(6*n+k+1,n)/(6*n+k+1).
%F A386379 G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..4} A(w^k*x)), where w = exp(2*Pi*i/5).
%o A386379 (PARI) apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
%o A386379 a(n) = apr(n\5, 6, n%5+1);
%Y A386379 Cf. A002295, A212071, A212072, A212073, A130564.
%Y A386379 Cf. A047749, A118968, A124753, A386380.
%K A386379 nonn
%O A386379 0,7
%A A386379 _Seiichi Manyama_, Jul 20 2025