This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386380 #25 Jul 30 2025 04:49:44 %S A386380 1,1,1,1,1,1,1,2,3,4,5,6,7,15,24,34,45,57,70,154,253,368,500,650,819, %T A386380 1827,3045,4495,6200,8184,10472,23562,39627,59052,82251,109668,141778, %U A386380 320866,543004,814506,1142295,1533939,1997688,4540200,7718340,11633440,16398200,22137570 %N A386380 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k). %H A386380 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss-Catalan_number">Fuss-Catalan number</a> %F A386380 For k=0..5, a(6*n+k) = (k+1) * binomial(7*n+k+1,n)/(7*n+k+1). %F A386380 G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..5} A(w^k*x)), where w = exp(Pi*i/3). %p A386380 A386380 := proc(n) %p A386380 option remember ; %p A386380 if n = 0 then %p A386380 1; %p A386380 else %p A386380 add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ; %p A386380 end if; %p A386380 end proc: %p A386380 seq(A386380(n),n=0..80) ; # _R. J. Mathar_, Jul 30 2025 %o A386380 (PARI) apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r); %o A386380 a(n) = apr(n\6, 7, n%6+1); %Y A386380 Cf. A002296, A233832, A233833, A386392, A233834, A130565. %Y A386380 Cf. A047749, A118968, A124753, A386379, A386396. %K A386380 nonn %O A386380 0,8 %A A386380 _Seiichi Manyama_, Jul 20 2025