This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386384 #44 Aug 27 2025 01:15:37 %S A386384 0,2,179,1,1,1196852626800230399,2,179,1,1, %T A386384 17377308326435956818596067989554034737368967210468674554156131654360754429984573360106123813424835044026977477398690421454067571097599999999999999999999, %U A386384 2,179,2,1196852626800230399,1,1,179,2 %N A386384 Continued fraction expansion of Sum_{k>=0} (-1)^k/(k!)!. %C A386384 The peak terms have the form P(k) = ((k+1)!)! / ((k!)!)^2 - 1. The sequence is an interleaving between the n-th runs of '2' and '1,1' in A386385, and P(A001511(n)+1). %H A386384 Daniel Hoyt, <a href="/A386384/b386384.txt">Table of n, a(n) for n = 0..39</a> %H A386384 Daniel Hoyt, <a href="https://doi.org/10.5281/zenodo.16897568">Justification for the explicit formula and program provided</a>, Zenodo, 2025. %t A386384 ContinuedFraction[Sum[(-1)^k/(k!)!, {k, 0, 6}], 21] %o A386384 (Python) %o A386384 import sys #for printing huge factorials %o A386384 sys.set_int_max_str_digits(0) # otherwise sys not needed. %o A386384 def a386384(n): %o A386384 import math %o A386384 if n==0: return 0 %o A386384 t=n-1; M=0x18199818 %o A386384 s=[1,1]; h=2; p=0; r=0 %o A386384 def g(u): %o A386384 nonlocal s,h %o A386384 while len(s)<u: %o A386384 q=2 if (h&1)==0 else 1 %o A386384 s+= [q]*((s[h-1]*2)//q); h+=1 %o A386384 while True: %o A386384 g(p+2) %o A386384 if s[p]==2: xb='B'; p+=1 %o A386384 elif p+1<len(s) and s[p]==1 and s[p+1]==1: xb='A'; p+=2 %o A386384 else: g(p+2); continue %o A386384 yb = xb if ((M>>(r&31))&1) else ('A' if xb=='B' else 'B') %o A386384 L = 2 if yb=='A' else 1 %o A386384 if t < L: return 1 if yb=='A' else 2 %o A386384 t -= L %o A386384 if t==0: %o A386384 rr=r+1 %o A386384 K=((rr & -rr).bit_length()-1)+2 %o A386384 A=math.factorial(math.factorial(K+1)) %o A386384 B=math.factorial(math.factorial(K)) %o A386384 return A//(B*B)-1 %o A386384 t-=1; r+=1 %Y A386384 Cf. A001511, A157196, A336810, A386385. %Y A386384 Cf. A387268 (decimal expansion). %K A386384 nonn,cofr,new %O A386384 0,2 %A A386384 _Daniel Hoyt_, Aug 17 2025