This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386388 #34 Jul 30 2025 23:36:22 %S A386388 0,0,0,1,3,11,36,118,395,1337,4598,15986,56270,199854,716132,2584754, %T A386388 9391051,34315811,126040590,465062362,1723070794,6407806952, %U A386388 23910175804,89493721076,335912391966,1264105728842,4768446886764,18027215662284,68291878325138 %N A386388 a(n) is the number of complement pairs of 2n-bead balanced bicolor necklaces. %C A386388 A003239(n) is the number of 2n-bead balanced bicolor necklaces, and A000013(n) is the number of those that are self-complementary (i.e., can be rotated so that all beads change color). Their difference 2*a(n) is the number of those that are not self-complementary. a(n) is the number pairs of distinct complements. %C A386388 Doubled entries: 0, 0, 0, 2, 6, 22, 72, 236, 790, 2674, 9196, 31972, 112540, 399708, 1432264, ... %H A386388 Michael De Vlieger, <a href="/A386388/b386388.txt">Table of n, a(n) for n = 0..1670</a> %F A386388 a(n) = (A003239(n) - A000013(n)) / 2. %e A386388 n | A003239(n) A000013(n) | 2*a(n) a(n) %e A386388 0 | 1 1 | 0 0 %e A386388 1 | 1 1 | 0 0 %e A386388 2 | 2 2 | 0 0 %e A386388 3 | 4 2 | 2 1 %e A386388 4 | 10 4 | 6 3 %e A386388 5 | 26 4 | 22 11 %e A386388 6 | 80 8 | 72 36 %e A386388 7 | 246 10 | 236 118 %e A386388 8 | 810 20 | 790 395 %e A386388 9 | 2704 30 | 2674 1337 %e A386388 10 | 9252 56 | 9196 4598 %e A386388 Examples for n=4 with necklaces of length 8: %e A386388 A000013(4) = 4 necklaces are self-complementary: %e A386388 00001111, 00110011, 01010101, 00101101 (compare A385665) %e A386388 There are a(n) = 3 pairs of complementary necklaces: %e A386388 (00110101, 00101011), (00100111, 00011011), (00010111, 00011101) %t A386388 a[0]=0;a[n_]:=( Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]- Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 0, Divisors[n]])/2;Array[a,29,0] (* _James C. McMahon_, Jul 30 2025 *) %Y A386388 Cf. A000013, A003239, A385665. %K A386388 nonn %O A386388 0,5 %A A386388 _Tilman Piesk_, Jul 20 2025