This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386393 #6 Jul 21 2025 01:44:55 %S A386393 1,1,3,3,7,19,19,43,99,251,251,555,1243,2827,6843,6843,14875,32635, %T A386393 72411,162875,381851,381851,819803,1771803,3860443,8494747,18918747, %U A386393 43357211,43357211,92234139,197168923,423959707,918096411,2005424027,4427023643,9976746651 %N A386393 Triangle T(n, k) (1 <= k <= n) read by rows: T(n, k) is the numerator of R(n, k) where R(n, k) = R(n, k-1)/2 + R(n-1, k-1) for 1 < k <= n with R(n, 1) = R(n-1, n-1) for n > 1, R(1, 1) = 1. %C A386393 Denominator of R(n, k) is 2^((n-1)*(n-2)/2+k-1). %e A386393 Triangle begins: %e A386393 1; %e A386393 1, 3; %e A386393 3, 7, 19; %e A386393 19, 43, 99, 251; %e A386393 251, 555, 1243, 2827, 6843; %e A386393 6843, 14875, 32635, 72411, 162875, 381851; %e A386393 381851, 819803, 1771803, 3860443, 8494747, 18918747, 43357211; %o A386393 (PARI) rows_upto(n) = {my(A, v1, v2, v3); %o A386393 v1 = vector(n, i, 0); v1[1] = 1; %o A386393 v2 = vector(n, i, 0); v2[1] = [1]; %o A386393 for(i=2, n, v3 = v1; v1[1] = v3[i-1]; %o A386393 for(j=2, i, v1[j] = v1[j-1]/2 + v3[j-1]); %o A386393 A = 2^((i-1)*(i-2)/2); %o A386393 v2[i] = vector(i, j, A*2^(j-1)*v1[j])); v2} %Y A386393 Cf. A305562. %K A386393 nonn,tabl,frac %O A386393 1,3 %A A386393 _Mikhail Kurkov_, Jul 20 2025