cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386403 Decimal expansion of zeta(3)/3.

This page as a plain text file.
%I A386403 #14 Jul 21 2025 06:11:17
%S A386403 4,0,0,6,8,5,6,3,4,3,8,6,5,3,1,4,2,8,4,6,6,5,7,9,3,8,7,1,7,0,4,8,3,3,
%T A386403 3,0,2,5,4,9,9,5,4,3,0,7,8,0,1,6,6,2,9,3,9,3,0,7,5,7,1,8,5,1,1,3,9,4,
%U A386403 6,0,6,8,5,9,5,4,3,7,6,9,6,7,2,8,8,1,8,6,2,4,5,3,6,4,4,5,0,8,6,0,4
%N A386403 Decimal expansion of zeta(3)/3.
%H A386403 Michael I. Shamos, <a href="https://citeseerx.ist.psu.edu/pdf/ae33a269baba5e8b1038e719fb3209e8a00abec5">Shamos's catalog of the real numbers</a>, 2011. See p. 424.
%F A386403 Equals A002117/3.
%F A386403 Equals Sum_{k>=1} cos(k*Pi/3)/k^3 (Shamos, 2011). - _Amiram Eldar_, Jul 21 2025
%e A386403 0.4006856343865314284665793871704833...
%p A386403 Digits := 100 ; Zeta(3.0)/3. ;
%t A386403 RealDigits[Zeta[3]/3, 10 , 120][[1]] (* _Amiram Eldar_, Jul 21 2025 *)
%o A386403 (PARI) zeta(3)/3 \\ _Amiram Eldar_, Jul 21 2025
%Y A386403 Cf. A002117, A072691 (zeta(2)/2), A098198 (zeta(4)/4), A386404 (zeta(5)/5), A259928 (zeta(6)/6).
%K A386403 nonn,cons
%O A386403 0,1
%A A386403 _R. J. Mathar_, Jul 20 2025