This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386434 #6 Jul 21 2025 13:15:28 %S A386434 200,392,500,675,800,968,1125,1323,1352,1372,1568,2000,2312,2888,3087, %T A386434 3200,3267,3528,3872,4000,4232,4563,5000,5292,5324,5408,5488,6075, %U A386434 6125,6272,6728,7688,7803,8575,8712,8788,9248,9747,9800,10125,10584,10952,10976,11552 %N A386434 Achilles numbers k such that A053669(k) < A006530(k). %H A386434 Michael De Vlieger, <a href="/A386434/b386434.txt">Table of n, a(n) for n = 1..10000</a> %F A386434 Intersection of A052486 and A080259 = A052486 \ A377854. %e A386434 Let s = A052486, q = A053669, and gpf = A006530. %e A386434 Table of n, a(n), and q(a(n)) for n = 1..12: %e A386434 n a(n) q(a(n)) %e A386434 -------------------------------- %e A386434 1 200 = 2^3 * 5^2 3 %e A386434 2 392 = 2^3 * 7^2 3 %e A386434 3 500 = 2^2 * 5^3 3 %e A386434 4 675 = 3^3 * 5^2 2 %e A386434 5 800 = 2^5 * 5^2 3 %e A386434 6 968 = 2^3 * 11^2 3 %e A386434 7 1125 = 3^2 * 5^3 2 %e A386434 8 1323 = 3^3 * 7^2 2 %e A386434 9 1352 = 2^3 * 13^2 3 %e A386434 10 1372 = 2^2 * 7^3 3 %e A386434 11 1568 = 2^5 * 7^2 3 %e A386434 12 2000 = 2^4 * 5^3 3 %e A386434 The number 12 is not a term since it is not powerful (i.e., not in A001694). %e A386434 The number 36, though powerful, is not a term since it is a perfect square. %e A386434 s(1) = 72 is not in the sequence since q(72) > gpf(72), i.e., 5 > 3. %e A386434 s(2) = 108 is not in the sequence since q(108) > gpf(108), i.e., 5 > 3. %e A386434 a(1) = s(3) = 200 because q(200) < gpf(200), i.e., 3 < 5. %e A386434 a(2) = s(4) = 392 because q(392) < gpf(392), i.e., 3 < 7, etc. %t A386434 (* Load Fast Mathematica algorithm for A055932 linked at A377854, then: *) %t A386434 nn = 6; mm = Times @@ Prime@ Range[nn]; Complement[Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[mm, 3]}, {a, Sqrt[mm/b^3]}], And[Length[#2] > 1, GCD @@ #2 == 1] & @@ {#, FactorInteger[#][[;; , -1]]} &], Union@ Flatten[f[nn][[3 ;; -1, 2 ;; -1]] ] ] %Y A386434 Cf. A001597, A001694, A006530, A052486, A053669, A052486, A080259, A377854. %K A386434 nonn %O A386434 1,1 %A A386434 _Michael De Vlieger_, Jul 21 2025