cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386441 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 27.

This page as a plain text file.
%I A386441 #21 Jul 31 2025 16:56:33
%S A386441 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,15,20,15,6,1,1,7,21,
%T A386441 8,8,21,7,1,1,8,1,2,16,2,1,8,1,1,9,9,3,18,18,3,9,9,1,1,10,18,12,21,9,
%U A386441 21,12,18,10,1,1,11,1,3,6,3,3,6,3,1,11,1,1,12,12,4,9,9,6,9,9,4,12,12,1,1,13,24,16,13,18,15,15,18,13,16,24,13,1
%N A386441 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 27.
%H A386441 Chai Wah Wu, <a href="/A386441/b386441.txt">Table of n, a(n) for n = 0..10010</a> (rows 0 to 140, flattened)
%H A386441 Kenneth S. Davis and William A. Webb, <a href="https://doi.org/10.1016/S0195-6698(13)80122-9">Lucas' Theorem for Prime Powers</a>, Europ. J. Combinatorics, Vol. 11, No. 3 (1990), 229-233.
%F A386441 T(i, j) = binomial(i, j) mod 27.
%e A386441 Triangle begins:
%e A386441                1;
%e A386441              1,  1;
%e A386441            1,  2,  1;
%e A386441          1,  3,  3,  1;
%e A386441        1,  4,  6,  4,  1;
%e A386441      1,  5,  10,  10,  5,  1;
%e A386441    1,  6,  15,  20,  15,  6,  1;
%e A386441  1,  7,  21,  8,   8,  21,  7,  1;
%e A386441   ...
%t A386441 T[i_,j_]:=Mod[Binomial[i,j],27]; Table[T[n,k],{n,0,13},{k,0,n}]//Flatten (* _Stefano Spezia_, Jul 22 2025 *)
%o A386441 (Python)
%o A386441 from math import isqrt, comb
%o A386441 from sympy import multiplicity
%o A386441 from gmpy2 import digits
%o A386441 def A386441(n):
%o A386441     def g1(s,w,e):
%o A386441         c, d = 1, 0
%o A386441         if len(s) == 0: return c, d
%o A386441         a, b = int(s,3), int(w,3)
%o A386441         if a>=b:
%o A386441             k = comb(a,b)%27
%o A386441             j = multiplicity(3,k)
%o A386441             d += j*e
%o A386441             k = k//3**j
%o A386441             c = c*pow(k,e,27)%27
%o A386441         else:
%o A386441             if int(s[0:1],3)<int(w[0:1],3): d += e
%o A386441             c0, d0 = g1(s[1:],w[1:],e)
%o A386441             c = c*c0%27
%o A386441             d += d0
%o A386441         return c, d
%o A386441     g = (m:=isqrt(f:=n+1<<1))-(f<=m*(m+1))
%o A386441     k = n-comb(g+1,2)
%o A386441     s, w = digits(g,3), digits(k,3)
%o A386441     if sum(int(d) for d in w)+sum(int(d) for d in digits(g-k,3))-sum(int(d) for d in s)>4: return 0
%o A386441     s = s.zfill(3)
%o A386441     w = w.zfill(l:=len(s))
%o A386441     c, d = g1(s[:3],w[:3],1)
%o A386441     for i in range(1,l-2):
%o A386441         c0, d0 = g1(s[i:i+3],w[i:i+3],1)
%o A386441         c1, d1 = g1(s[i:i+2],w[i:i+2],-1)
%o A386441         c = c*c0*c1%27
%o A386441         d += d0+d1
%o A386441     return c*3**d%27
%Y A386441 Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A008975, A095143, A095144, A095145, A034932.
%Y A386441 Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
%K A386441 nonn,tabl,easy
%O A386441 0,5
%A A386441 _Chai Wah Wu_, Jul 21 2025