A386442 Decimal expansion of Sum_{k>=2} H(k) * (zeta(k) - 1), where H(k) is the k-th harmonic number.
1, 6, 8, 0, 5, 3, 1, 2, 2, 2, 0, 4, 2, 8, 3, 6, 7, 6, 9, 4, 0, 3, 3, 8, 7, 7, 4, 0, 4, 1, 3, 4, 7, 9, 0, 9, 7, 4, 6, 9, 3, 8, 1, 5, 5, 4, 5, 6, 8, 9, 6, 1, 2, 7, 0, 1, 7, 1, 7, 7, 3, 5, 9, 8, 6, 3, 7, 6, 8, 2, 2, 6, 8, 1, 1, 6, 0, 8, 0, 2, 6, 4, 0, 3, 3, 8, 4, 3, 4, 0, 9, 8, 5, 8, 4, 4, 4, 2, 2, 8, 7, 3, 0, 8, 5
Offset: 1
Examples
1.68053122204283676940338774041347909746938155456896...
Links
- Khristo N. Boyadzhiev, A special constant and series with zeta values and harmonic numbers, arXiv:1903.11141 [math.NT], 2019.
- Michael I. Shamos, Shamos's catalog of the real numbers, 2011. See p. 565.
Programs
-
Mathematica
RealDigits[NIntegrate[HarmonicNumber[x]/x, {x, 0, 1}, WorkingPrecision -> 120] + 1 - EulerGamma][[1]]
-
PARI
sumpos(k = 2, (k/(k-1))*log(k/(k-1)) - 1/k)