cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386445 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).

This page as a plain text file.
%I A386445 #9 Jul 22 2025 09:52:11
%S A386445 1,1,2,35,2904,749262,469791130,609789812623,1465325443822620,
%T A386445 6004904311876287022,39410188505158004325524,
%U A386445 394180711528456847821432318,5771988198703021102520933624372,119699491661363792184803354859998664,3418976586120192927373434641290957978490
%N A386445 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).
%F A386445 G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ).
%o A386445 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^4*v[j+1]*v[i-j])); v;
%Y A386445 Cf. A075834, A386443, A386444, A386446, A386447.
%Y A386445 Cf. A385832.
%K A386445 nonn
%O A386445 0,3
%A A386445 _Seiichi Manyama_, Jul 22 2025