cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386447 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^6 * a(k) * a(n-1-k).

This page as a plain text file.
%I A386447 #8 Jul 22 2025 09:52:20
%S A386447 1,1,2,131,95760,392424606,6132419429842,286126426174265119,
%T A386447 33663060172069656177612,8824636572155130972996888814,
%U A386447 4689791333849576329442118802082252,4689800713441077274969296364554337253614,8308277421310507219950890075481144453543272228
%N A386447 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} k^6 * a(k) * a(n-1-k).
%F A386447 G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..6} Stirling2(6,k) * x^k * (d^k/dx^k A(x)) ).
%o A386447 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, j^6*v[j+1]*v[i-j])); v;
%Y A386447 Cf. A075834, A386443, A386444, A386445, A386446.
%Y A386447 Cf. A385834.
%K A386447 nonn
%O A386447 0,3
%A A386447 _Seiichi Manyama_, Jul 22 2025