cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386453 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).

This page as a plain text file.
%I A386453 #8 Jul 22 2025 09:51:36
%S A386453 1,1,2,11,131,2888,107027,6212005,534389458,65203760863,
%T A386453 10889677250198,2417582805875622,696275799766601842,
%U A386453 254839529849806176727,116462397939843834894367,65452132793842930368844779,44638474752168615525812508053,36514339485766910607857620043816
%N A386453 a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).
%F A386453 G.f. A(x) satisfies A(x) = 1/( 1 - x - x*Sum_{k=1..3} binomial(2,k-1) * x^k/k! * (d^k/dx^k A(x)) ).
%o A386453 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+2, 3)*v[j+1]*v[i-j])); v;
%Y A386453 Cf. A075834, A386452, A386454, A386455.
%Y A386453 Cf. A385875.
%K A386453 nonn
%O A386453 0,3
%A A386453 _Seiichi Manyama_, Jul 22 2025