This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386460 #6 Jul 24 2025 05:47:53 %S A386460 3,4,3,3,8,2,8,8,0,4,6,4,3,7,5,8,2,3,6,8,5,9,9,2,2,6,2,6,6,6,1,4,5,9, %T A386460 7,8,8,6,5,2,5,1,3,4,5,1,5,2,0,0,6,2,2,6,1,5,9,3,4,2,1,8,3,1,8,2,6,3, %U A386460 1,2,3,8,3,5,3,4,7,4,7,0,4,9,9,7,4,7,3,1,3,9 %N A386460 Decimal expansion of the surface area of an augmented truncated cube with unit edges. %C A386460 The augmented truncated cube is Johnson solid J_66. %H A386460 Paolo Xausa, <a href="/A386460/b386460.txt">Table of n, a(n) for n = 2..10000</a> %H A386460 Wikipedia, <a href="https://en.wikipedia.org/wiki/Augmented_truncated_cube">Augmented truncated cube</a>. %F A386460 Equals 15 + 10*sqrt(2) + 3*sqrt(3) = 15 + 10*A002193 + A010482. %F A386460 Equals the largest root of x^4 - 60*x^3 + 896*x^2 + 120*x - 21596. %e A386460 34.33828804643758236859922626661459788652513451520... %t A386460 First[RealDigits[15 + Sqrt[200] + Sqrt[27], 10, 100]] (* or *) %t A386460 First[RealDigits[PolyhedronData["J66", "SurfaceArea"], 10, 100]] %Y A386460 Cf. A386459 (volume). %Y A386460 Cf. A002193, A010482, A386412, A386461. %K A386460 nonn,cons,easy %O A386460 2,1 %A A386460 _Paolo Xausa_, Jul 23 2025